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1.  INTRODUCTION 

In this paper, we focus on the estimation of a theoretical house price model 
in which spatio-temporal variations in house prices are driven by supply and 
demand conditions, with spatial effects coming from two distinct sources. One 
is the direct dependence of house prices in a given locality on house prices in 
nearby localities. The other is via hierarchical error components typical of 
multilevel models. Direct dependence is the net effect of what we refer to as 
displaced demand and displaced supply. Displaced demand occurs where, ceter-
is paribus, high prices nearby cause demand to increase, because the negative 
relationship between prices and demand leads to purchasers switching away 
from high price locations nearby. Displaced supply occurs where high prices 
nearby cause supply to fall as a result of suppliers of housing switching to 
where higher prices give better investment returns. The supply and demand 
equations lead to a reduced form in which prices depend directly on prices 
nearby. We refer to this as a spillover effect. 

The second source of spatial heterogeneity comes from the presence of 
hierarchical error components which represent the impact of local (district) 
effects embedded within wider (county) effects. Intuitively, local effects can be 
thought of as postcode effects, where particular postcodes are associated with 
more or less prestige. Likewise we envisage an independent county effect (a 
number of districts together are nested within a county). County A, which is a 
prestigious address, will tend to be associated with higher prices than less 
prestigious county B. The difference between these two sources of spatial 
heterogeneity in house prices is that the hierarchical district and county effects 
are constant within counties and districts, and terminate abruptly at county or 
district boundaries. In contrast, the spillover effects have an autoregressive 
specification, so that they extend across space with diminishing effect as 
distance increases. Thus spatial heterogeneity and autocorrelation is partly 
accounted for by the discrete non-overlapping effects of the components of the 
hierarchical level, and partly by spatial dependence operating, via the spatial 
autoregressive process, simultaneously across all areas. 

Our solution to the problem of estimating the panel data model with spatial 
spillover effects and random hierachical effects, which we refer to as a nested 
random effects spatial autoregressive panel data model, is to propose a novel 
methodological approach. While the focus of the paper is squarely on the theory 
and application in relation to house prices, this has been introduced elsewhere 
in the literature. In contrast, our proposed estimator as set out intially in Baltagi 
et al (2014) is new. Recent developments in econometrics allow us to take into 
account cross-sectional correlation in a panel data context, as demonstrated for 
example by Elhorst (2003, 2010a), Anselin, Le Gallo and Jayet (2008), Anselin 
(2010) and Baltagi (2011). Early work on hierarchical panels was carried out by 
Fuller and Battese (1973), Montmarquette and Mahseredjian (1989), Antweiler 
(2001) and Baltagi, Song and Jung (2001, 2002), among others. The 
contribution here combines both hierarchical and spatial panel approaches, 
building on the sparse earlier literature which suggests combining nested 
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models and spatial autoregressive processes in a cross-sectional context (see 
Corrado and Fingleton, 2011, 2012). 

From the purely spatial perspective, a common way to proceed is to apply 
Maximum Likelihood methods. However, Maximum Likelihood procedures are 
often challenging when the sample size is large. Moreover, they call for explicit 
distributional assumptions. In fact, this is why Kelejian and Prucha (1998) and 
Lee (2003) proposed an Instrumental Variable (IV) procedure for the cross-
sectional spatial autoregressive model, which is computationally simple and less 
restrictive regarding the distribution of the disturbances. In this paper, we 
extend this cross-sectional IV approach to the nested random effects spatial 
autoregressive panel data model

5
. 

The plan of the paper is as follows: Section 2 describes the spatial 
autoregressive model with nested random effects, Section 3 briefly summarises 
an IV procedure to estimate this model  (details of which are given in Baltagi et 
al, 2014) and Section 4 describes the house price data. Section 5 discusses the 
empirical results and Section 6 gives our concluding remarks. 

2.  THE SPATIAL LAG MODEL  
INCLUDING NESTED RANDOM EFFECTS 

Based on a theoretical framework that assumes the existence of equilibrium 
housing supply and demand functions, details of which are given in Baltagi et 
al(2014), we arrive at an empirical specification that allows for a exogenous 
effects on house prices, spatial spillover of price levels across districts, and 
nested random effects attributable to districts nested within counties, thus  

 𝑦𝑖𝑗𝑡 = 𝜌∑ ‍𝑁
𝑔=1 ∑ ‍

𝑀𝑔

ℎ=1 𝑤𝑖𝑗,𝑔ℎ𝑦𝑔ℎ𝑡 + 𝐱𝑖𝑗𝑡𝛽 + 𝜀𝑖𝑗𝑡 , (1) 

where 𝑖 = 1,… ,𝑁 , 𝑗 = 1,… ,𝑀𝑖  and 𝑡 = 1,… , 𝑇 . The dependent variable 𝑦𝑖𝑗𝑡 
denotes the average house price of district 𝑗 in county 𝑖 at time period 𝑡. 𝐱𝑖𝑗𝑡 is a 
(1 × 𝐾) vector of explanatory (exogenous) variables, namely income within 
commuting distance (𝑌𝑖𝑗𝑡

𝑐 ) and the available stock of dwellings (Λ𝑖𝑗𝑡). 𝜌 is a 

scalar and 𝛽  is a (𝐾 × 1) vector of parameters to be estimated. The weight 
𝑤𝑖𝑗,𝑔ℎ = 𝑤𝑘,𝑙 is the (𝑘 = 𝑖𝑗, 𝑙 = 𝑔ℎ) element of the matrix 𝐖𝑆 with 𝑖𝑗 denoting 

district 𝑗 within county 𝑖, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑀𝑖  and similarely for 𝑔ℎ.Thus 
𝑘, 𝑙 = 1, . . . , 𝑆 where 𝑆 = ∑ ‍𝑁

𝑖=1 𝑀𝑖 and 𝐖𝑆 is an (𝑆 x 𝑆) matrix of known spatial 
weights denoting inter-district connectivity, which has zeros on the main 

diagonal and is row-normalised so that for row 𝑘, ∑ ‍𝑁
𝑔=1 ∑ ‍

𝑀𝑔

ℎ=1 𝑤𝑘,𝑔ℎ  =1. We 

assume that 𝜌  is bounded numerically to ensure spatial stationarity, i.e., 
𝑒min
−1 < 𝜌 < 1 where 𝑒min is the minimum real characteristic root of 𝐖𝑆 . The 

nested random effects are introduced via the remainder term 𝜀𝑖𝑗𝑡 which follows 
an error component structure : 

                                                      
5
 In a similar spirit, Baltagi and Liu (2011) derived an IV estimator in the context of 

spatial autoregressive random effects panel data model. However, this estimator does 
not deal with the unbalancedness or the nested structure of the panel data. 
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 𝜀𝑖𝑗𝑡 = 𝛼𝑖 + 𝜇𝑖𝑗 + 𝑣𝑖𝑗𝑡 , (2) 

where 𝛼𝑖 denotes an unobservable county specific time-invariant effect which is 
assumed to be i.i.d.(0, 𝜎𝛼

2). 𝜇𝑖𝑗  is the nested effect of district 𝑗 within the 𝑖th 

county which is assumed to be i.i.d.(0, 𝜎𝜇
2), and 𝑣𝑖𝑗𝑡 is a remainder disturbance 

which is also assumed to be i.i.d. (0, 𝜎𝑣
2) . The 𝛼𝑖 ’s, 𝜇𝑖𝑗 ’s and 𝑣𝑖𝑗𝑡 ’s are 

independent of each other and among themselves. In contrast to the classical 
literature on panel data, grouping the data by periods rather than units is more 
convenient when we consider the spatial dependence. In matrix notation, for a 
cross-section, the model (1) corresponds to  

 𝐲𝑡 = 𝜌𝐖𝑆𝐲𝑡 + 𝐗𝑡𝛽 + 𝜀𝑡 , (3) 

where 𝐲𝑡  is of dimension (𝑆 × 1) , 𝐗𝑡  is an (𝑆 × 𝐾)  matrix of explanatory 
variables. 

The assumption that the nested error components are independent of each 
other and among themselves is a standard assumption in the literature. While it 
would be interesting to attempt to take account of possible interdependencies in 
a nested random effects context, this is something very much on the research 
horizon and beyond the scope of the present paper. Additionally, as is typical in 
random effects specifications, we are assuming the independence of the 
compound errors and the explanatory variables leading to consistent estimation, 
but as pointed out by Baltagi (2008), there is no entirely satisfactory test of this 
assumption. Typically, following Hausman (1978), in a general panel setting 
one would compare estimates from a fixed effects specification with the 
estimates from a random effects specification. Unfortunately, although this test 
is very popular in the literature, it is conditional on an assumption that the fixed 
effects estimates are consistent, something which cannot be guaranteed. 

Against this there are some advantages of a random effects specification. For 
example, with 353 districts, there would be a considerable loss of degrees of 
freedom by invoking fixed effects. In addition, random effects allows one to 
obtain estimates taking account of permanent cross-section or between 
variation. In comparison fixed effects focuses on short term variation (Partridge 
(2005), Baltagi (2008), Elhorst (2010b)). So while correlation of the random 
effects with exogenous regressors may induce inconsistency, there will be 
compensation in the form of enhanced precision of the estimates. Higgins, Levy 
and Young (2006) use county-level data to analyze growth and convergence 
across the US, and with 3000 counties and only 3 time periods, the within 
variation is small and uninteresting compared with the between. Likewise Barro 
(1997) criticizes fixed effects panel data methods that rely purely on time series 
information, arguing that the conditioning variables often vary slowly over 
time, so that the most important information is lost. 

3.  ESTIMATION 

The key to understanding our estimation procedure is the covariance matrix 
of 𝜀 , which is denoted by 𝛀 . This captures the nested random effects 
attributable to the influence of counties, districts nested within counties, and the 
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remainder. The paper by Baltagi et al (2014) gives the technical detail of how 
this is accomplished. 

Stacking the 𝑇 periods, the model (3) becomes 

 𝐲 = 𝜌𝐖𝐲+ 𝐗𝛽 + 𝜀 (4) 

 = 𝐁−1(𝐗𝛽 + 𝜀), (5) 

where 𝐁 = 𝐈𝑇 ⊗𝐁𝑆, 𝐁𝑆 = (𝑑𝑖𝑎𝑔(𝐈𝑀𝑖
) − 𝜌𝐖𝑆) and 𝐖 = (𝐈𝑇 ⊗𝐖𝑆). 

It is well known that the spatially lagged dependent variable 𝐖𝐲 is corre-
lated with the disturbances 𝜀  and therefore, the Ordinary Least Squares esti-
mator will be inconsistent. Let 𝐙 = (𝐗,𝐖𝐲) and 𝛿 = (𝛽, 𝜌)𝛵, the model (5) can 
be written as 

 𝐲 = 𝐙𝛿 + 𝜀. (6) 

In the cross-section, Kelejian and Prucha (1998) suggested a Two-Stage 
Least Squares spatial estimator (S2SLS) for the spatial lag model model, 
advising that the instrument set should be kept to a low order in order to avoid 
linear dependence and retain full column rank for the matrix of instruments. We 
therefore use the recommended instrument set [𝐗,𝐖𝐗,𝐖2𝐗]. 

Premultiplying by 𝛀−1/2 gives  

 𝐲∗ = 𝐙∗𝛿 + 𝜀∗, (7) 

where 𝐲∗ = 𝛀−1/2𝐲, 𝐙∗ = 𝛀−1/2𝐙 = 𝛀−1/2(𝐗,𝐖𝐲)  and 𝜀∗ = 𝛀−1/2𝜀 . 
Applying the Kelejian and Prucha (1998) 2SLS procedure to (7), we obtain our 
nested random effects spatial Two-Stage Least Squares estimator (NRE-S2SLS) 
of 𝛿, given by 

 𝛿𝑁𝑅𝐸−𝑆2𝑆𝐿𝑆 = (𝐙∗
𝛵
𝐏𝐇∗∗𝐙∗)

−1
𝐙∗

𝛵
𝐏𝐇∗∗𝐲∗, (8) 

where 𝐇∗∗ = 𝛀−1/2𝐇 and 𝐏𝐇∗∗ = 𝐇∗∗(𝐇∗∗𝛵𝐇∗∗)−1𝐇∗∗𝛵. 

Although we have derived a NRE-S2SLS estimator, in Baltagi et al (2014) 
we also go one stage further and obtain a (very closely related) nested best 
spatial 2SLS estimator (NB-S2SLS) estimator, following Lee (2003). This is 
omitted here to save space. 

4.  DATA DESCRIPTION 

The house price data give 𝑝𝑖𝑗𝑡, 𝑖 = 1,… ,𝑁; 𝑗 = 1,… ,𝑀𝑖; 𝑡 = 1,… , 𝑇, which 
is the average selling prices by local authority district (of which there are 353 
covering England). Our modeling is based on 𝑇 = 8 years of data observed over 
the period 2000 to 2007. While these data may appear fixed (at least until 
boundary changes occur), we do not regard them as a population, but rather as a 
realization taken from an infinite number of posisble realizations or super-
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population. We can think of the remainder disturbance in our model capturing 
unpredictable unmodelled variance across space and time as a driver of different 
realizations. We are interested in the underlying process that could have 
generated different realizations and which has generated the data we observe, 
and use the ‘sample’ data to make inferences about this process. 

Figure 1 maps the data for a single snapshot of time, the year 2001, clearly 
showing a heterogeneous and spatially correlated mean house price distribution 
across districts (the other 7 years show similar patterns). 

Figure 1. Mean residential property price (all types)                                     
in English districts 2001 
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The data are organised by districts nested within counties. Figure 1 gives the 
distribution of districts, while Figure 2 gives the counties within which districts 
are nested. The district and county definitions are not immutable, having 
changed over time typically for administrative reasons. Likewise we choose to 
change the definition of counties, thus increasing county-level variance, by 
merging all counties lying outside the South East of England. The rest of 
England is therefore treated as a single super-county, while the South Eastern 
counties remain as separate sources of variance. The 16 counties which are ‘not 
merged’, with the brackets containing the number of nested districts, are 
Bedfordshire (4), Berkshire (6), Buckinghamshire (5), East Sussex (6), Essex 
(14), Hampshire and the Isle of Wight (14), Hertfordshire (10), Kent (13), 
Oxfordshire (5), Surrey (11), West Sussex (7), Cambridgeshire (6), Norfolk (7), 
Suffolk (7), Inner London (14), Outer London (19). The remaining 30 counties 
are merged as one ‘super county’ nesting the remaining 205 districts. 

Figure 2. English counties 
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Income by district for each year (𝑌𝑖𝑗𝑡) is based on data from the UK’s Office 
of National Statistics. 

 The Office of National Statistics also provides a matrix of inter- and intra-
district commuting frequencies (𝑑∗) from the UK 2001 census. 

Using these commuting frequencies, we calculate income within commuting 
distance 𝑌𝑖𝑗𝑡

𝑐 , applying less weight to districts with relatively few commuters 

and most weight is applied to local income with large within-district commuting 
flows. Thus each district’s income is weighted by its row normalized commu-
ting frequency. 

The spatial lag matrix 𝐖𝑆 is also based on commuting (subsequently row-
normalized to give 𝐖𝑆), but rather than 𝑑∗ we commence with 𝛿,which is 𝑑∗ 
with the main diagonal cells set to zero. Thus the vector 𝐖𝑆𝐲𝑡  comprises 
weighted averages of ‘nearby’ districts. The rationale here is that inter-district 
commuting is an appropriate indicator of inter-district proximity or connec-
tivity. The weights matrix 𝐖𝑆 a function of the larger values (> 50) in the cells 
of 𝛿. 

On the supply side, Λ𝑖𝑗𝑡 is equal to the annual dwelling stock estimates by 
district divided by the annual population estimates for each district, data which 
are also available from the UK’s Office of National Statistics. The number of 
dwellings (per 100 persons) respresents the available supply. 

5.  MODEL ESTIMATES 

Table 1 shows the estimates obtained for our house price model using 
various model specifications and estimators. Our preferred estimates are the 
NRE-S2SLS. These estimators provide theoretically acceptable and appro-
priately signed parameter estimates

6
. OLS estimation, which omits both the 

spatial lag and the nested error structure, clearly introduces bias. Comparing the 
OLS estimates with other estimation outcomes which include the endogenous 
spatial lag 𝐖𝐲 highlights its omission as an important source of bias. Although 
it controls for the spatial lag, S2SLS estimation produces a positive coefficient 
on Λ𝑖𝑗𝑡 which is contrary to the negative estimate antici-pated from theory. We 
attribute this to a lack of control for nested district and county effects. 

The nested random effects (ANOVA) estimates do include district and 
county effects and the anticipated negative sign on the Λ𝑖𝑗𝑡 coefficient, but here 
the model set up excludes the endogenous spatial lag. Compared with NRE-
S2SLS, the ANOVA estimates of 𝛽1 , 𝛽2 , 𝜎𝛼

2 , 𝜎𝜇
2 , and 𝜎𝑣

2  are very different, 
indicating omitted variable bias. This illustrates that it is insufficient to pick up 
spatial heterogeneity and correlation simply via nested error components and to 
ignore spillover effects. However, including both sources of spatial correlation, 
that due to the spatial lag and that due to the nested error components, elimi-

                                                      
6
 Appendices 2 and 3 in Baltagi et al (2014) gives the small sample performance of 

these estimators using Monte Carlo simulations. 
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nates this source of bias and gives us the preferred NRE-S2SLS, which gives 
outcomes that one would anticipate from theory, with a highly significant 
estimate of 𝜌 pointing to the importance of the simultaneous spatial interaction 
of price levels. Also in line with theory is the significant positive coefficient for 
income within commuting distance 𝑌𝑖𝑗𝑡

𝑐 , and significant negative coefficient for 

the number of dwellings (per 100 persons) Λ𝑖𝑗𝑡. 

Table 1. Various parameter estimates for the house price model 

 OLS S2SLS SML RE-S2SLS RE-SML NRE 
NRE-
S2SLS 

NRE-SML NB-S2SLS 

Income within 
Comm. Distance 

(𝑌𝑖𝑗𝑡
𝑐 ) 

1.1318 0.3631 0.2536 0.5057 0.4641 6.4756 0.4869 0.4649 0.4975 

s.e. (0.0355) (0.0368) (0.0363) (0.0732) (0.0810) (0.0917) (0.0724) (0.0894) (0.0641) 

t-ratio (31.882) (9.845) (6.975) (6.907) (5.727) (70.617) (6.722) (5.201) (7.760) 

Supply (Λ𝑖𝑗𝑡) 1391.90 2125.303 2100.05 -730.4573 -724.167 -2747.29 -741.3797 -733.5315 -744.557 

s.e. (432.4) (299.405) (370.92) (105.442) (568.42) (230.86) (105.502) (528.706) (105.534) 

t-ratio (3.220) (7.098) (5.66) (-6.927) (-1.274) (-11.90) (-7.027) (-1.387) (-7.055) 

Spatial Lag of 
House Prices 

(𝑝𝑖𝑗𝑡
𝑾𝑆) 

- 0.5781 0.6107 0.8489 0.7961 - 0.8732 0.8078 0.8713 

s.e. - (0.0207) (0.0150) (0.0124) (0.0171) - (0.0112) (0.0301) (0.0111) 

t-ratio - (27.8744) (40.508) (68.2956) (46.531) - (77.7798) (26.8258) (78.7695) 

𝜎̂𝛼
2 - - - - - 0.2533 0.0562 0.1066 (*) 

𝜎̂𝜇
2 - - - 0.2114 0.2482 0.3337 0.1738 0.0973 (*) 

𝜎̂𝑣
2 0.4927 0.2343 0.3615 0.0132 0.4892 0.0647 0.0132 0.4707 (*) 

 (*)
 This estimator uses the same consistent estimates of 𝜎𝛼

2, 𝜎𝜇
2 and 𝜎𝑣

2 as those used for 
NRE-S2SLS. 

With regard to the county effects operating via the error components, we 
anticipate that there will be discernable county-level impacts in the South and 
East of England especially, resulting from the inter-county status differences 
that are perceived by some, even if they are stereotypical rather than being 
objective reality. Some supposed reputational differences between Essex and 
the Royal county of Berkshire are caricatured by the entries in Table 2.  

District effects can also be envisaged, and are at their most potent in the so-
called ’London postcode wars’. For example, people living in parts of the leafy 
and affluent district of Richmond-Upon-Thames are angry that their postcode is 
the one used in the more deprived borough of Hounslow. According to the 
property valuation website Zoopla, in 2013 the average house in Hounslow was 
worth £  294,020, while the average house in Richmond was £  423,982. to 
According to one newspaper report, a resident said “ I don’t know anyone who 
would turn down the offer of a Richmond postcode instead of a Hounslow one”, 



34 Badi Baltagi, Bernard Fingleton, Alain Pirotte 

given that it would suddenly increase the value of their home by such a large 
amount.                                                           

Table 2. County comparisons (stereotypes !)  

 

The estimates of 𝜎𝛼
2, 𝜎𝜇

2 and 𝜎𝑣
2 which partition the error into components 

representing county, district and remainder variance, highlight the relative 
importance of the district component. With regard to the county-level variance 
𝜎̂𝛼
2,  which is the outcome of dividing counties into two groups, there is 

discernable contrast between the South and East of England and elsewhere, with 
inter-county variation within the South East reflecting the (relatively minor) 
role of county-level factors operating to distinguish, for example, Essex from 
Berkshire. In the rest of England, we see much less inter-county variation. If we 
undo the bloc construction so as to introduce inter-county variation also within 
the rest of England, the NRE-S2SLS estimator gives 𝜌̂ = 0.855105  ( 𝑡 =
70.63), 𝛽̂1 = 0.545864 (𝑡 = 7.20) and 𝛽̂2 = −752.1513 (𝑡 = −7.11), and 𝜎̂𝛼

2 
is equal to 0.013932 ( 𝜎̂𝜇

2 = 0.17992, 𝜎̂𝑣
2 = 0.013185) as a consequence of 

the influence on the estimates of the comparatively smaller inter-county 
variation in the rest of England.   

6. CONCLUSION 

The paper analyzes house price data observed in 353 English districts over 8 
years. We show that, in line with theoretical expectation, income within com-
muting distance has a positive effect on prices, and the stock of housing has a 
negative effect, and that there is a significant spatial lag term indicating postive 
correlation between prices locally and prices in ‘nearby’ districts. Also we 
model additional price heterogeneity using nested error components attri-
butable to district and county effects, showing that these and the spatial lag are 
both necessary elements of our house price model. Our Monte Carlo analysis 
detailed in Baltagi et al. (2014) indicates that for realizations of an artificial data 
generating process with both spatial lag effects and hierarchical error compo-
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nents, our estimators (NRE-S2SLS and NB-S2SLS) are superior to a number of 
alternatives. 

To sum up, the spatial econometrics literature is almost totally devoid of 
hierarchical models, as pointed out by Corrado and Fingleton (2012). Moreover, 
the spatial panel literature makes no reference to spatial interaction effects in a 
nested context. In the presence of both sources of spatial dependence, omission 
of one or both from the estimator can lead to incorrect inference and an 
improper understanding of true causal mechanisms. 
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UNE ESTIMATION DES EFFETS DE DÉBORDEMENT MULTI-NIVEAUX 
POUR DES MODÈLES SPATIAUX AVEC DES DONNÉES DE PANEL - 

UNE APPLICATION AUX PRIX IMMOBILIERS EN ANGLETERRE 

Résumé - Le travail présenté dans cet article s’appuie sur un modèle 
autorégressif spatial qui utilise des données de panel aléatoirement relevées, 
afin d’étudier la variation annuelle des prix immobiliers durant la période 
2000-2007 dans 353 districts locaux en Angleterre. L’originalité de l’article 
repose sur l’utilisation d’un nouvel estimateur basé sur l’approche des 
variables instrumentales dans les modèles autorégressifs spatiaux. 
 
Mots-clés - PRIX IMMOBILIERS, DONNÉES DE PANEL, DÉCALAGE 
SPATIAL, VARIABLES INSTRUMENTALES, DÉPENDANCE SPATIALE 


