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Abstract - Taking a Bayesian perspective on model comparison for cross-
sectional and static panel data models considerably simplifies the task of select-
ing an appropriate model. A wide variety of alternative specifications that in-
clude various combinations spatial dependence in lagged values of the depend-
ent variable, spatial lags of the explanatory variables, as well as dependence in 
the model disturbances have been the focus of a literature on various statistical 
tests used by practitioners to distinguishing between alternative specifications. 
LeSage and Pace (2009) make a theoretical argument that implies the task of 
model selection can be simplified by focusing on only two model specifications, 
one reflecting theoretical situations involving global spillovers (the spatial 
Durbin model, SDM) and the other theoretical scenarios involving local spillo-
vers (the spatial Durbin error model, SDEM). LeSage (2014) extends this theo-
retical argument to the case of static panel data models. MATLAB software 
functions for carrying out Bayesian cross-sectional and static spatial panel data 
model comparisons is described here along with a number of illustrative appli-
cations.  
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1. INTRODUCTION 
 

LeSage and Pace (2009) define spatial spillovers for a causal relationship be-
tween characteristics/actions of entity/agent (  ) located at position   in space 
and the outcomes/decisions/actions (  ) of an agent/entity located at position   
as a situation where:          .  

LeSage and Pace (2014) argue that practitioners should focus on a theoreti-
cal motivation for either local or global spatial spillovers, which would facili-
tate choice of an appropriate spatial regression specification. If locations   are 
neighbors to location  , we have a local spatial spillover, whereas situations 
involving locations   that include not only neighbors to  , but neighbors to 
neighbors of  , neighbors to neighbors to neighbors, and so on, are defined as 
global spillover.  

Two of the most popular spatial regression specifications are: 1) global 
spillover models that include a spatial lag of the dependent variable, and 2) 
local spillover models that include spatial lags of the explanatory variables but 
not the dependent variable. LeSage (2014) shows that practitioners need logi-
cally only consider the single SDM global spillover model versus the SDEM 
local spillover specification. The logic behind his argument is that other specifi-
cations such as the spatial autogressive (SAR) and spatial error (SEM) are sub-
sumed by these two, as is the spatially lagged explanatory variables (SLX) 
specification from LeSage and Pace (2009).  

2. TESTING FOR SLX, SDM VERSUS SDEM  
IN CROSS-SECTIONAL MODEL SPECIFICATIONS 

 
There is a large literature on various statistical tests that can be used to dis-

tinguish between alternative spatial model specifications. For example, the (ro-
bust) LM tests developed by Anselin et al. (1996) for cross-sectional data to test 
whether spatial interaction effects (        ) should be included in the 
model. Elhorst (2010) extends these tests to the case of static panel data models. 
Another alternative has been to estimate a model that includes spatial interac-
tion effects and test whether the model can be simplified to one that excludes 
these effects using Wald or Likelihood ratio tests. These tests and the numerical 
outcomes for a widely used panel data set on cigarette demand (Baltagi, 2001) 
are illustrated in Elhorst (2012).  

LeSage and Pace (2014) point out that before engaging in statistical tests to 
determine an appropriate model specification, the theoretical context might 
point to either a local or global specification. For example, if the substantive (or 
theoretical) aspects of our applied modeling situation point to local spillovers as 
the only reasonable possibility, there should be no need for statistical tests. 
LeSage (2014) points out that there are cases where theory is ambiguous regard-
ing the question of local versus global spillovers. As a concrete illustration, he 
points to the case of spillovers from state-level cigarette taxes, noting that sub-
stantial commercial smuggling activity could produce global spillovers, where-
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as mere cross-border shopping by consumers suggests local spillovers (see 
LaFaive and Nesbit, 2013).  

LeSage and Pace (2009) describe calculation of Bayesian posterior model 
probabilities for cross-sectional spatial regression models based on work of 
LeSage and Parent (2007). LeSage (2014) sets forth the theoretical underpin-
nings for calculation of Bayesian posterior model probabilities for the SLX, 
SDM and SDEM spatial panel data model specifications. Our focus here is on 
describing a set of MATLAB functions that implement these approaches to 
Bayesian model comparison that produce model probabilities. Applied exam-
ples are provided that should assist practitioners with intelligent use of these 
functions.  

2.1. The lmarginal_cross_section() function 

A single MATLAB function named lmarginal_cross_section was construct-
ed to carry out Bayesian posterior model probabilities that compare the three 
relevant cross-sectional spatial regression models, SLX, SDM and SDEM. In a 
cross-sectional spatial regression, an     vector   contains the dependent 
variable for   regions, an     matrix   contains explanatory variable vec-
tors, and an     matrix   holds the spatial weight matrix.  

A call of the function using these model data with no options produces a re-
sults structure variable with a     vector of log marginal magnitudes (these 
form the basis for Bayesian model comparison) and a     vector of posterior 
model probabilities for the three models, SLX, SDM and SDEM. Since no input 
options were specified, these results are based on default values used by the 
function. We can print out the results using the mprint function from the 
toolbox.

1
  

1.0  

result = lmarginal_cross_section(y,X,W); 
in.cnames = strvcat('log-marginal','model probs'); 
in.rnames = strvcat('model','slx','sdm','sdem'); 
in.fmt = '%10.4f'; 
out = [result.lmarginal result.probs]; 
mprint(out,in); 

  

The results printed are shown below, where we see that all three models ex-
hibit similar log-marginal likelihoods and posterior model probabilities. This 
type of result will occur when spatial dependence in the dependent variable for 
the SDM model and the disturbances of the SDEM model is low. Note that in 
the presence of no spatial dependence, all three models collapse to the same 
specification (the SLX).  

 

                                                      
1
All references to the toolbox are to the Spatial Econometrics Toolbox for MATLAB 

available for free at www.spatial-econometrics.com 
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 model log-marginal model probs 
 slx   -1088.6072    0.3686 
 sdm   -1088.8197    0.2980 
 sdem  -1088.7077    0.3334 
  

This should be clear from examining equations for the three model specifica-
tions, where   is the scalar parameter reflecting the strength of spatial depend-
ence. As    , all specifications collapse to the SLX. The sample data vector 
  in this example was in fact generated using the SLX specification, so the pos-
terior probabilities produced by the model comparison method are correct.  

                             (1) 

                                      (2) 

                                                  (3) 

        
                                    

As with all functions in the Spatial Econometrics Toolbox, typing ‘help 
lmarginal_cross_section’ in the MATLAB Command Window will show doc-
umentation for the function.  

>> help lmarginal_cross_section 
PURPOSE: Bayesian log-marginal posterior for cross-sectional spa-

tial regression models 
      no priors on beta, sige 
      uniform prior on rho, lambda over eigenvalue bounds 
---------------------------------------------------------- 
USAGE: results = lmarginal_cross_section(y,x,W,info) 
where:  

  y = dependent variable vector (N x 1) 
  x = independent variables matrix, WITHOUT INTERCEPT or W*x  

      variables 
  W = N by N spatial weight matrix (for W*y and W*e) 
  info.lflag = 0 for full lndet computation (default = 1,fastest) 
             = 1 for MC lndet approximation (fast for large  

                 problems) 
  info.order = order to use with info. 

                lflag = 1 option (default = 50) 
  info.iter = iterations to use with info. 

               lflag = 1 (default = 30) 
  info.rmin = (optional) minimum value of rho in search 

              (default = -1) 
  info.rmax = (optional) maximum value of rho in search 

              (default = +1) 
  info.eig  = 0 for default rmin = -1,rmax = +1, 
            = 1 for eigenvalue calculation of these 
 --------------------------------------------------------- 
 RETURNS: a structure: 
   results.meth  = 'lmarginal_cross_section' 
   results.nobs  = # of cross-sectional observations 
   results.y   = N x 1 vector of y from input 
   results.nvar  = # of variables in x-matrix 
   results.rmin  = minimum value of rho used (default +1) 
   results.rmax  = maximum value of rho used (default -1) 
   results.lflag = lflag value from input (or default value used) 
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   results.eig  = 0,1 from input (or default value used) 
   results.lmarginal = a 3 x 1 column-vector with [log-marginal] 
      [ logm_slx logm_sdm logm_sdem ]' 
   results.probs = a 3 x 1 column-vector with model probs 
   results.logm_slx 
   results.logm_sdm 
   results.logm_sdem 
 -------------------------------------------------------- 
  

This documentation shows that when calling the function an     explana-
tory variables matrix without an intercept is used, since the function adds the 
intercept term as well as the spatially lagged explanatory variables   . These 
spatial lags of   are part of all three model specifications being compared. The 
user-controlled options are input using a structure variable (named ‘info’ here) 
that allow for various choices that influence the speed and accuracy of the com-
putations involved.

2
 Generally, faster computational speed is accompanied by 

slightly lower numerical accuracy, for example one can use the default         
(info.eig = 0) which uses the range of        for the spatial dependence 
parameter rather than the true range of                , where      
and      denote the smallest (i.e., most negative) and largest characteristics 
roots of the matrix  . Calculating a minimum eigenvalue can take time for 
problems involving a large number of observations  .  

An example of the trade-offs between speed and accuracy is shown below, 
where an SLX model was generated using 605 observations (reflecting Ohio 
school districts). Despite the difference in accuracy, one should draw the same 
inference that an SLX model is the specification most consistent with the sam-
ple data from both sets of results.  

 
 results for defaults (no info input arguments) 
 uses -1, 1 interval and lndetmc 
 true model is SLX 
 time taken is:      0.1720 seconds 
 model log-marginal model probs 
 slx   -1088.6072    0.4447 
 sdm   -1089.1336    0.2627 
 sdem  -1089.0255    0.2927 
 results for info.lflag = 0, info.eig = 1 
 true model is SLX 
 time taken is:      8.2840 seconds 
 model log-marginal model probs 
 slx   -1088.6072    0.3686 
 sdm   -1088.8197    0.2980 
 sdem  -1088.7077    0.3334 

2.2. Comparing models and spatial weight matrices 

The log-marginal values returned in the function lmarginal_cross_section 
result structure variable can be viewed as a common denominator for compar-
ing a number of alternative SLX, SDM, SDEM models based on varying spatial 

                                                      
2
 Users can rely on any structure variable name, for example options.lflag = 0 would 

work, with the name ‘options’ entered in place of ‘info’. 



16  James P. LeSage 

weight matrices. Note that these cannot be used to compare models with differ-
ing sets of explanatory variables (see LeSage and Parent, 2007 regarding this 
type of comparison). To illustrate this, we use the per capita income growth 
rates over the 1987 to 1993 period for         US counties (in the lower 48 
states plus the district of Columbia) as the dependent variable   and the initial 
period (1987) logged income level and logged population level as explanatory 
variables to form the matrix  .  

A series of nearest neighbor spatial weight matrices are compared along with 
the three model specifications using a loop, with the code shown below.  

latt = uscounties(:,2); % extract latt-long coordinates 
long = uscounties(:,3); % from the dataset 
lmarginals = []; % empty matrix for storing results 
neighbors = []; 
for ii=5:16; % loop over varying nearest neighbors W-matrices 
W = make_neighborsw(latt,long,ii); 
neighbors = [neighbors ii]; 
result = lmarginal_cross_section(pci_growth,xmatrix,W); 
% extract log-marginals and put them into a matrix 
lmarginals = [lmarginals 
       result.lmarginal']; % we transpose the 3 x 1 vector 
       % each column is a different model (column 1 = slx, 

       % column 2 = sdm column 3 = sdem) 
end; 
% calculate model probabilities for each column (model) 
nmodels = length(lmarginals); 
adj = max(lmarginals); 
madj = matsub(lmarginals,adj); 
xx = exp(madj); 
% compute posterior probabilities 
psum = sum(xx); 
probs = [neighbors matdiv(xx,psum)]; 
in.fmt = strvcat('%10d','%16.4f','%16.4f','%16.4f'); 
in.cnames = strvcat('#neigbhors','slx','sdm','sdem'); 
mprint(probs,in); 

Since the log-marginals require exponentiation, we use a normalization that 
subtracts the     vector of maximum values from each column of the     
matrix (returned by the MATLAB max function) using the matsub function 
from the toolbox. This function performs non-conformable matrix subtraction 
allowing us to subtract the     vector of column maximum values from each 
row of the matrix. This normalization avoids numerical over- and under-flows 
that may arise from exponentiation, but does not alter the posterior probability 
results.  

The results which took 9.8 seconds to calculate are shown below, where we 
see that for all three models a 14 nearest neighbors weight matrix   has the 
highest probability.

3
 The probabilities sum to unity down the columns, since the 

8 different weight matrices are being compared for each model here.  

                                                      
3
 When using the default MC determinant option, info.lflag = 1, every run of the 

program will produce slightly different results because a Monte Carlo approximation to 
the log-determinant calculation is being used, (see Barry and Pace, 1999). 
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Changing the input options to the function to produce the most accurate but 
slowest results produced the second set of results shown, and took 2,786 sec-
onds. It should be apparent that in cases where the sample size is large, the de-
fault input options produce reasonably accurate results.

4
  

 default options results 

(no info structure input) 

most accurate options results 

(info.lflag = 0, info.eig = 1) 

#neig slx sdm sdem slx sdm sdem 
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

7 0.0126 0.0000 0.0000 0.0126 0.0000 0.0000 
8 0.0168 0.0000 0.0000 0.0168 0.0000 0.0000 
9 0.0109 0.0000 0.0000 0.0109 0.0000 0.0000 
10 0.0050 0.0000 0.0000 0.0050 0.0000 0.0000 
11 0.0289 0.0000 0.0000 0.0289 0.0000 0.0000 
12 0.0501 0.0044 0.0000 0.0501 0.0098 0.0001 
13 0.0814 0.0232 0.0028 0.0814 0.0310 0.0037 
14 0.7646 0.8901 0.9683 0.7646 0.8710 0.9815 
15 0.0210 0.0112 0.0021 0.0210 0.0056 0.0008 
16 0.0086 0.0711 0.0268 0.0086 0.0826 0.0139 

 
There is still the question of which specification (SLX, SDM, SDEM) is 

most consistent with this sample data. As noted, log-marginal likelihoods can 
be viewed as a common denominator for comparing models, so the following 
code re-normalizes the log-marginals using the maximum element of the entire 
    matrix, not just the maximum of each column. This produces posterior 
model probabilities that compare all 24 model specifications such that the 24 
probabilities sum to unity.  

Interestingly, the results point to the SDEM specification (and a weight ma-
trix based on 14 nearest neighbors) as most consistent with the sample data for 
this simple county-level spatial growth regression. Most empirical studies in the 
spatial growth regression literature use the SAR or SDM specification which 
are global spillovers models, in contrast to the local spillovers SDEM pointed to 
here. These results indicate that spatial spillovers at the county level do not 
extend (on average over the sample of counties) beyond first-order (contiguous) 
counties, and that the spillovers are the result of contextual effects, not endoge-
nous interaction (see LeSage and Pace, 2014 for detailed discussion of these 
issues).  

% find best model, slx, sdm, sdem 
adj2 = max(max(lmarginals)); % maximum element of the matrix 
madj2 = lmarginals-adj2; 
% calculate probabilities across all models and weight matrices 
xx2 = exp(madj2); 
psum2 = sum(vec(xx2)); 
probs2 = [neighbors xx2./psum2]; 
mprint(probs2,in); 

                                                      
4
 The SLX model results are identical because no numerical integration is required to 

calculate the log-marginal likelihood in this case. Varying degrees of accuracy in 
numerical integration are what explains the difference in results (see LeSage, 2014 for 
details regarding this.) 
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 default options results 

(no info structure input) 

most accurate options results 

(info.lflag = 0, info.eig = 1) 

#neig slx sdm sdem slx sdm sdem 
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

12 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 

13 0.0000 0.0000 0.0064 0.0000 0.0000 0.0037 

14 0.0000 0.0004 0.9468 0.0000 0.0002 0.9812 

15 0.0000 0.0000 0.0024 0.0000 0.0000 0.0008 

16 0.0000 0.0002 0.0437 0.0000 0.0000 0.0139 
 

A discussion of the way in which the levels of spatial dependence, and num-
ber of observations which impact signal-to-noise in spatial regression models 
impacts the accuracy of Bayesian model comparison methods can be found in 
LeSage and Pace (2009, Chapter 6).  

3. PANEL DATA MODELS 
 

Taking the same approach used to integration of the model parameters 
LeSage (2014) extended the cross-sectional approach to the case of a panel data 
model setting. The function lmarginal_static_panel can be used to compare 
static panel data specifications for SLX, SDM and SDEM.

5
 A static panel mod-

el does not contain variables and parameters that allow for time dependence 
(see Parent and LeSage, 2012 for an example of a dynamic spatial panel data 
model specification).  

A vector of panel data observations for   regions over   time periods should 
be organized such that the first   elements of the vector   represent the first 
time period, the next   elements the second time period, and so on. The      
explanatory variables matrix   is organized in the same fashion, with the inter-
cept excluded. For the moment, we ignore the issue of fixed or random effects 
as part of the model, with this issue discussed later. In addition to the      
vector   and      explanatory variables matrix  , we assume a single spatial 
configuration between the   regions for all time periods, and let   be an 
    row-standardized spatial weight matrix.  

The local spatial spillover specification for the case of static panel data mod-
els is the spatial Durbin error model (SDEM) shown in (4), where   represent 
fixed effects and    time period specific effects.  

                                                      
5
 LeSage (2014) shows that these three models subsume other models such as SAR and 

SEM as special cases, following the same logic as set forth in LeSage and Pace (2009). 
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                                 (4) 

         
                           

The model allows for local spillovers to immediately neighboring observa-
tions through spatial lag terms for the explanatory variables:    , which have 
been labeled contextual effects in the social networking literature. To differenti-
ate these from the endogenous interaction arising from spatial lags of the de-
pendent variable, they have also been labeled exogenous interaction effects.  

As in the case of cross-sectional models, as the spatial dependence parameter 
   , both the SDM and SDEM collapse to the panel data SLX specification. 
All three specifications are shown below using matrix notation, where the vec-
tor   is     , the matrix   has dimension     , and we use       to de-
note spatial and time period fixed effects, and   is the Kronecker product.  

                                                           (5) 

                                      (6) 

                                                      (7) 

                                                         

Both SDM and SDEM can be viewed as encompassing models for the SLX, 
since they nest this model. Because of this, when   takes a value of zero, the 
sample data provide no basis for selecting between these three models. In this 
circumstance, the log-marginal likelihoods (and associated model probabilities) 
should approach equality. If fact, despite our interest in comparing the SDM 
versus SDEM models, practitioners would be interested in knowing when the 
level of spatial dependence in the data is low enough to allow use of the simpler 
SLX specification.  

Lee and Yu (2010) have proposed a transformation procedure to eliminate 
both space and time fixed effects from the model. A MATLAB function de-
meanF written by Elhorst can be used to accomplish this task, and the docu-
mentation (shown below) for the function lmarginal_static_panel indicates that 
it is the user’s responsibility to carry out this transformation. There is also a 
new input option, ‘info.iflag’ to indicate that this type of transformation has 
been used prior to inputting the (transformed) data vector  ̃, (transformed) data 
matrix  ̃ and (transformed) weight matrix  ̃.  

 
>> help lmarginal_static_panel 
PURPOSE: Bayesian log-

marginal posterior for static spatial panel models 
user should eliminate fixed effects using differencing transfor-

mations 
      no priors on beta, sige 
      uniform prior on rho, lambda over eigenvalue bounds 
 --------------------------------------------------------- 
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 USAGE: results = lmarginal_static_panel(y,x,W,N,T,info) 
 where: 

  y = dependent variable vector (N*T x 1) 
  x = independent variables matrix, WITHOUT INTERCEPT TERM 
  W = N by N spatial weight matrix (for W*y and W*e) 
  N = # of cross-sectional units 
  T = # of time periods 
  info.lflag = 0 for full lndet computation (default = 1,fastest) 
         = 1 for MC lndet approximation (fast for large problems) 
  info.order = order to use with info.lflag = 1 option 

               (default = 50) 
  info.iter = iterations to use with info.lflag = 1(default = 30) 
  info.rmin = (optional) minimum value of rho in search 

              (default = -1) 
  info.rmax = (optional) maximum value of rho in search 

              (default = +1) 
  info.iflag = 0 for conventional W-matrix 
  info.iflag = 1 for transformed W-matrix (using dmeanF()) 
--------------------------------------------------------- 
RETURNS: a structure: 
  results.meth  = 'lmargainal_static_panel' 
  results.nobs  = # of cross-sectional observations 
  results.ntime = # of time periods 
  results.y   = N*T x 1 vector of y from input 
  results.nvar  = # of variables in x-matrix 
  results.rmin  = minimum value of rho used (default +1) 
  results.rmax  = maximum value of rho used (default -1) 
  results.lflag = lflag value from input (or default value used) 
  results.iflag = iflag value from input (or default value used) 
  results.lmarginal = a 3 x 1 column-vector with [log-marginal] 
      [ logm_slx logm_sdm logm_sdem ]' 
  results.probs = a 3 x 1 column-vector with model probs 
  results.logm_slx 
  results.logm_sdm 
  results.logm_sdem 
 -------------------------------------------------------- 
 

An example of using the transformation function demeanF is shown below, 
where ‘ted=0’ is an input option to request only spatial fixed effects, and 
‘ted=1’ both space and time-period fixed effects. The example represents a da-
ta-generated   vector based on      years and      states plus District 
of Columbia.   

 

ted = 0; 
[yf,Xf,No,To,Wf]=demeanF(y,X,N,T,ted,W); 
info.iflag = 1; 
result1 = lmarginal_static_panel(yf,Xf,Wf,No,To,info); 
in.cnames = strvcat('log-marginal','model probs'); 
in.rnames = strvcat('model','slx','sdm','sdem'); 
in.width = 10000; 
in.fmt = '%10.4f'; 
out = [result1.lmarginal result1.probs]; 
mprint(out,in); 
 
true model is SLX 
model log-marginal model probs 
slx   -2896.3385    0.3182 
sdm   -2895.9531    0.4679 
sdem  -2896.7358    0.2139 
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The time taken to produce these results was round 0.2 seconds on an Intel i7-
4510U CPU, 64-bit operating system with MATLAB version 8.3.0.532 (R2014a). 
We interpret these results to indicate that the SLX model (not the SDM) is the 
correct specification, and the data-generated   vector was indeed created to 
follow the SLX specification. A lack of high probability in favor of the SDM or 
SDEM specifications should always be interpreted as evidence in favor of the 
SLX specification. In the face of low levels of spatial dependence, this is the 
correct inference regarding the alternative model specifications. LeSage (2014) 
reports results of a Monte Carlo experiment assessing performance of this Ba-
yesian approach to static panel data model comparison with regard to changes 
in levels of spatial dependence and sample size. LeSage (2014) summarizes the 
Monte Carlo results by indicating that for the purpose of drawing inferences re-
garding the SDM versus SDEM specifications low-to-moderate levels of spatial 
dependence (     ) will produce results that identify the correct specification.  

As an illustration, we compare SLX, SDM and SDEM specifications for the 
case           and two matrices  , one based on first-order contiguity 
of the states and the other based on lengths of border miles in common between 
each state and its neighbors. A data-generated  -vector was constructed based 
on      , with the true weight matrix being that based on border miles in 
common. Results for the case where the true specification was SDM when 
comparing three specifications (SLX, SDM and SDEM) based on each weight 
matrix as as follows:  

In this comparison the sum of the three model probabilites in each column is 
one, and the higher log-marginal values for the    miles weight matrix points 
to these three models as superior to those based on the    contiguity matrix. 
However, use of the    matrix produces the wrong inference regarding SLX, 
SDM, SDEM, erroneously pointing to the SDEM as the correct specification. 
Results are also shown for the case where      , and here we see that even in 
the case of the wrong    matrix, the correct SDM specification is identified. 
Intuitively, it is difficult to draw inferences regarding the correct spatial weight 
matrix when there is low or moderate spatial dependence.  

true model is SDM Wm (rho = 0.3) 

model log-marginal model probs log-marginal model probs 

slx Wm -2952.5556 0.0000 slx Wc -3043.9501 0.0000 

sdm Wm -2916.6129 0.8251 sdm Wc -3014.6607 0.0372 

sdem Wm -2918.1642 0.1749 sdem Wc -3011.4081 0.9628 

 
true model is SDM Wm (rho = 0.6) 
model log-marginal model probs log-marginal model probs 

slx Wm -3263.9848 0.0000 slx Wc -3344.8898 0.0000 

sdm Wm -2992.2356 1.0000 sdm Wc -3138.2277 1.0000 

sdem Wm -3038.2632 0.0000 sdem Wc -3155.8827 0.0000 
 

For a comparison of all six models such that the model probabilities sum to 
one, we use the two     vectors of log-marginals based on the two different 
  matrices to construct new probabilities as follows:  
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% find best W-matrix using a 6 x 1 vector of log-marginals 
lmarginals = [results1.lmarginal  % 3 x 1 vector based on Wm 
              results2.lmargina]; % 3 x 1 vector based on Wc 
 
nmodels = length(lmarginals); 
adj = max(lmarginals(:,1)); 
madj = matsub(lmarginals,adj); 
xx = exp(madj); 
% compute posterior probabilities 
psum = sum(xx); 
probs = [matdiv(xx,psum)]; 
in2.fmt = strvcat('%16.4f'); 
in2.rnames = strvcat('models','slx Wm','sdm Wm','sdem Wm','slx Wc

','sdm Wc','sdem Wc'); 
mprint(probs,in2); 
 
models  (rho = 0.3) 
slx Wm      0.0000 
sdm Wm      0.8251 % true model 
sdem Wm     0.1749 
slx Wc      0.0000 
sdm Wc      0.0000 
sdem Wc     0.0000 
  

Here the posterior model probabilities identify the true SDM specification 
based on   , even in the case of low levels of spatial dependence (      .  

4. CONCLUSIONS 
 

A set of MATLAB functions for calculating log-marginal likelihoods for 
comparing SLX, SDM and SDEM model specifications for both cross-sectional 
and static panel data scenarios was described here. The calculations are fast and 
Monte Carlo results reported in LeSage (2014) indicate that they should work 
well provided that moderate levels of spatial dependence exist (levels of the 
scalar dependence parameter      .)  

The functions can be used to draw inferences regarding local versus global 
spatial spillover specifications in cases where theoretical aspects of the model-
ing exercise do not clearly indicate an appropriate specification. Applied exam-
ples also show how to use these functions to compare alternative spatial weight 
matrices in an effort to find a weight matrix most consistent with the sample 
data.  

An important caveat is that the model comparison approach illustrated here 
should not be used to compare model specifications based on differing sets of 
explanatory variables. For this type of model comparison, Parent and LeSage 
(2007) set forth an approach for spatial regression models similar to that of Fer-
nandez, Ley, and Steel (2001) for non-spatial regression that have become pop-
ular in the Markov Chain Monte Carlo Model Comparison (     ) literature. 
Comparing specifications based on different sets of explanatory variables re-
quires assigning a Bayesian prior distribution (for example, the   prior from 
Fernandez, Ley, and Steel, 2001) to parameters in the model, and future work 
should examine the effectiveness this and other related priors in the case of 
spatial regression models (see Han and Lee, 2013).  
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SOFTWARE POUR LA COMPARAISON  
DES MODÈLES SPATIAUX BAYÉSIENS 

 
Résumé - L’analyse bayésienne a permis d’améliorer sensiblement la compa-
raison et la sélection des modèles spatiaux statiques sur des données de panel. 
Durant, ces dernières années, les statisticiens et les économètres se sont focali-
sés, plus particulièrement, sur l’étude et la comparaison d’un ensemble de spé-
cifications alternatives des modèles spatiaux existants, permettant de combiner 
des effets de dépendance spatiale sur la variable expliquée, sur les variables 
explicatives, voire même sur le terme d’erreur. Sur un plan théorique, LeSage 
et Pace (2009) montrent que les procédures de sélection du modèle spatial le 
plus adéquat peuvent être simplifiées, si l’on considère une hypothèse binaire 
dans laquelle soit on observe des effets d’autocorrélation spatiale sur un plan 
global (appréhendés par le modèle Durbin spatial) soit on observe des effets 
d’autocorrélation spatiale dont le caractère est purement local (appréhendés 
par le modèle Durbin spatial à erreurs). Lesage (2014) introduit cette hypo-
thèse également dans la sélection des modèles spatiaux sur des données de pa-
nel. L’objectif de cet article est de présenter la programmation de la comparai-
son des modèles spatiaux sur des données de panel, en s’appuyant sur les mé-
thodes bayésiennes. Cette programmation est faite sous MATLAB, agrémentée 
de nombreuses applications empiriques. 
 
 

Mots-clés - MODÈLES SPATIAUX STATIQUES SUR DES DONNÉES DE 
PANEL, FACTEURS BAYÉSIENS, EFFETS GLOBAUX OU LOCAUX 
D’AUTOCORRÉLATION SPATIALE 
 

 


