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Résumé - Cet article propose un point d’étape sur l’économétrie des données spatiales en 
mettant l’accent sur les enjeux d’identification des interactions spatiales et les perspectives 
ouvertes par le développement des données massives géolocalisées. Ce champ de 
l‘économétrie a pour objectif l’analyse des phénomènes où la proximité géographique, les 
interdépendances spatiales et les hétérogénéités territoriales jouent un rôle structurant. Si 
les modèles habituels, tels que le SAR ou le SDM, permettent de formaliser les interactions 
spatiales, leur mise en œuvre empirique soulève des difficultés d’identification majeures. 
Identifier rigoureusement ces interactions suppose de clarifier la nature des interactions, de 
traiter les problèmes d’endogénéité et de contrôler les sources d’hétérogénéité spatiale. 
L’article discute ensuite les défis que doit relever les méthodes de l’économétrie des données 
spatiales tant dans une perspective méthodologique structurelle que dans le cadre des 
modèles d’inférence causale, tout en intégrant les méthodes d’inférence développées dans 
d’autres branches de l’économétrie. Notamment, il souligne que l’essor du big spatial data et 
des algorithmes de spatial machine learning constituent une opportunité décisive pour 
dépasser certaines limites des approches traditionnelles. 
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INTRODUCTION 
 

“I invoke the first law of geography: everything is related to everything else, but 
near things are more related than distant things.” (Tobler, 1970). Cette citation 
constitue le point de départ de nombreuses recherches empiriques portant sur 
l’économétrie des données spatiales, et souligne l’importance de la prise en compte 
des  spillovers spatiaux (sous la forme d’externalités ou d’interactions) et des effets 
de diffusion spatiale dans l’explication de comportements et/ou résultats. Au-delà 
de ces spillovers, les phénomènes économiques se caractérisent souvent par des 
structures géographiques distinctes, comme des organisations centre-périphérie ou 
des clusters locaux, qui renvoient à la présence d’hétérogénéité spatiale. 

 
L’économétrie des données spatiales est un champ méthodologique qui vise à 

adapter et enrichir les outils économétriques classiques pour prendre en compte la 
dimension géographique des données. Il s’agit, d’une part, d’offrir un cadre pour 
modéliser explicitement les différents mécanismes sous-tendant les spillovers 
spatiaux, afin d’améliorer la compréhension de phénomènes économiques 
caractérisés par des interactions spatiales, comme les questions relatives à la 
concurrence fiscale, et/ou par des externalités territoriales, qu’il s’agisse de la 
dynamique immobilière, de la mobilité résidentielle ou encore des enjeux 
environnementaux. D’autre part, ces outils visent à intégrer les différentes formes 
d’hétérogénéité spatiale. 

 
Le développement récent de ce champ ne peut être dissocié de l’évolution des 

données disponibles. L’essor de la géolocalisation et la généralisation 
d’informations à haute résolution spatiale – issues des registres administratifs, des 
capteurs, de l’imagerie satellitaire ou encore des traces numériques laissées par les 
individus – offrent aujourd’hui des données empiriques géolocalisées d’une ampleur 
sans précédent. Ce que l’on qualifie désormais de big spatial data ouvre la voie à une 
nouvelle génération de matériau empirique, combinant des bases massives, des 
résolutions fines et des outils de machine learning, mais posant aussi de nouveaux 
défis en matière de modélisation et d’identification. 

 
Cet article ne vise pas à fournir une revue exhaustive de ce champ qui dispose déjà 

de nombreuses synthèses1 mais il a pour objectif de mettre en évidence quelques axes 
qui pourraient constituer des développements importants du champ. La première 
section présente le modèle général de modélisation des effets spatiaux en coupe 
transversale et discute des enjeux d’identification des spillovers géographiques. La 
deuxième section suivante sélectionne des perspectives actuelles du champ : les pistes 
qui s’ouvrent pour les méthodes structurelles et causales d’identification, d’une part, 
et le dialogue avec l’émergence des données massives et les méthodes de machine 
learning, d’autre part. La dernière section conclut brièvement.  

 
1. MODЀLES PRINCIPAUX ET LEURS ENJEUX  

1.1. Modéliser les interactions spatiales 

Un des premiers objectifs de l’économétrie des données spatiales est la volonté 
de formaliser et d’identifier les interactions spatiales entre les unités, qu’elles soient 

 
1 Parmi les contributions les plus récentes, les lecteurs pourront par exemple se référer à 
Bellefon et Loonis (2018) et les sections consacrées à l’analyse de données spatiales dans 
Fisher et Nijkamp (2021) et Nijkamp et al. (2025).  
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agrégées (régions, pays) ou microéconomiques (individus, entreprises). L’approche 
structurelle consiste à expliciter un modèle théorique, s’appuyant par exemple sur 
une fonction de production ou d’utilité, puis à en dériver un modèle économétrique 
dont les paramètres ont une interprétation économique. 

 
Ainsi, dans la littérature sur la concurrence fiscale par exemple, des modèles tels 

que le Spatial Autoregressive Model (SAR), le Spatial Durbin Model (SDM) sont 
utilisés pour estimer l’existence et l’ampleur d’interactions stratégiques entre 
juridictions locales (Agrawal et al., 2022). 

 
 Manski (1993) propose une typologie en trois catégories pour classer les 

différents effets du voisinage :  
- Les effets endogènes : quantifient la dépendance du comportement d’une unité aux 
comportements de ses voisins. 
- Les effets contextuels : mesurent la dépendance aux caractéristiques des voisins. 
- Les effets corrélés : captent la corrélation induite par des facteurs communs ou des 
chocs non observés. 

 
L’enjeu est alors de distinguer les vrais effets d’influence des corrélations liées à 

des caractéristiques partagées ou des chocs collectifs.2 Gibbons et al. (2015) 
proposent un modèle général qui englobe ces différents effets :  
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où 𝑦𝑖 est la variable à expliquer pour l’unité i ; 𝑥𝑖 désigne un vecteur regroupant les 
caractéristiques propres à l’unité ; la première somme correspond aux effets 
endogènes, la deuxième aux effets contextuels tandis que les deux dernières 
sommes  captent l’effet des effets corrélés, qui se manifestent respectivement sous 
la forme de facteurs communs (observés) et de chocs non observés. 𝑤𝑖𝑗

𝜅 , 𝜅 = 𝑦, 𝑥, 𝑧, 𝜐, 
est l’élément de la matrice de connectivité   𝑊𝜅,qui modélise le lien entre les 
observations i et j et qui peut varier selon le type d’effet considéré. On parlera de 
modèle spatial lorsque cette matrice de connectivité est basée sur une fonction de 
la proximité géographique (inverse de la distance, plus proche voisin, contiguïté, 
etc.). Finalement,  𝜀𝑖 représente le terme d’erreurs idiosyncratique.  
 

Le SDM, qui impose l’absence d’effets corrélés dans le modèle général ci-dessus 
ainsi que l’égalité des différentes matrices d’interactions, est habituellement 
considéré comme la spécification la plus générale dans les papiers empiriques 
mobilisant les outils de l’économétrie des interactions spatiales.  En effet, le SDM 
englobe les spécifications habituellement utilisées dans les études empiriques : SAR 
(si γ = 0), le modèle avec caractéristiques des voisins (SLX) (si λ = 0), et le modèle avec 
autocorrélation des erreurs (SEM) (si γ = −λβ).  De plus, les papiers empiriques 
veulent également souvent identifier la spécification la plus pertinente pour 
modéliser le phénomène d’intérêt. Cette sélection, basée sur des critères statistiques 
et d’ajustement aux données, mobilise deux approches complémentaires. Dans 
l’approche général-vers-spécifique, le modèle SDM est initialement estimé et un 

 
2 Manski a également défini le Reflection problem, qui indique que même en l’absence d’effets 
corrélés, il est impossible de distinguer les effets endogènes des effets exogènes. Pour une 
discussion approfondie de ce problème, le lecteur peut consulter Bramoullé et al. (2020). 
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ensemble d’hypothèses sur les différents paramètres sont ensuite testées afin de 
vérifier s’il peut être simplifié. Dans l’approche spécifique-vers-général, un modèle 
linéaire sans aucun terme de spillovers constitue le point de départ et est 
progressivement enrichi en fonction des résultats de tests du multiplicateur de 
Lagrange ou du ratio de vraisemblance3. Enfin, après avoir sélectionné la 
« meilleure » spécification et obtenu une estimation des différents paramètres, la 
dernière étape classique consiste à calculer les effets marginaux (« direct, indirect, 
total ») de différentes variables explicatives, qui prennent en compte les effets de 
rétroaction impliqués par la structure du modèle et la matrice de connectivité 
utilisée (LeSage et Pace, 2009). 

1.2. Les défis de l’identification 

L’identification du paramètre des effets endogènes doit constituer un enjeu 
central lorsque l’objectif principal de l’analyse est d’estimer des interactions 
spatiales. Cependant, plusieurs sources de confusion rendent difficile la distinction 
entre véritables interactions et simples corrélations géographiques (Gibbons et 
Overman, 2012 ; Debarsy et Le Gallo, 2025).  

 
La première difficulté tient au choix de la matrice de connectivité. L’avantage 

d’utiliser une fonction de la proximité géographique pour modéliser les liens entre 
observations est que l’espace physique est exogène et non manipulable. Cependant, 
en plus d’être discutable dans certains cas (notamment lorsque les observations 
sont mobiles), cet argument impose deux grandes limites à l’analyse quantitative. 
D’une part, les interactions réelles entre observations peuvent être de nature 
économique, sociale ou institutionnelle et utiliser une approximation géographique 
peut être réductrice et générer des problèmes de mauvaise spécification. D’autre 
part, d’un point de vue explicatif, sans justification théorique solide, l’utilisation 
d’une matrice basée sur des critères géographiques ne permet pas d’identifier les 
canaux économiques par lesquels les interactions s’opèrent.  

 
Un second défi concerne le décalage possible entre l’unité statistique utilisée et 

l’unité de décision pertinente. Les données disponibles sont souvent agrégées à 
l’échelle des communes, régions ou quartiers, tandis que les comportements et 
interactions peuvent se jouer à d’autres niveaux. Ce décalage introduit des biais 
d’agrégation (ecological fallacy) ou des problèmes de changement d’échelle (change of 
support), qui compromettent l’interprétation claire et précise des paramètres estimés. 

 
Troisièmement, il est nécessaire de distinguer soigneusement les spillovers 

spatiaux de l’hétérogénéité spatiale. La présence de facteurs communs (observés ou 
non), de régimes spatiaux ou de coefficients variables dans l’espace peut mener à 
des configurations similaires à la présence de véritables spillovers sans pour autant 
que ceux-ci soient présents. Ainsi, une mauvaise spécification ou l’omission de 
variables pertinentes peut conduire à confondre autocorrélation spatiale et 
hétérogénéité structurelle. En outre, des mécanismes comme le spatial sorting, c’est-
à-dire la tendance des individus à se regrouper en fonction de caractéristiques 
observables ou non, accentue ce risque en rendant la matrice de connectivité 
spatiale potentiellement endogène. L’incapacité à contrôler l’hétérogénéité spatiale 
obère souvent l’identification des paramètres d’interaction et est peu prise en 
compte dans la littérature empirique. 

 
3 Nous développons dans les sections suivantes pourquoi cette approche ne permet pas de 
traiter correctement les défis de l’identification. 
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Enfin, la définition même du paramètre d’intérêt joue un rôle crucial. Dans 
certains cas, comme dans les modèles de concurrence fiscale, il s’agit d’identifier un 
véritable effet d’interaction spatiale, ce qui exige une modélisation structurelle et 
une construction rigoureuse de la matrice de connectivité. Dans d’autres, l’objectif 
est l’identification de relations économiques entre variables, qui peut justifier la 
prise en compte de spillovers et d’hétérogénéité spatiale. La confusion entre ces 
deux objectifs peut conduire à surinterpréter les coefficients spatiaux ou à leur 
attribuer une portée causale injustifiée. 
 

2. APPROFONDIR L’IDENTIFICATION : DE LA THÉORIE                                                      
AUX DONNÉES MASSIVES 

2.1. Approches structurelles et approches réduites pour l’identification 

Comme l’a montré la section précédente, la modélisation des spillovers spatiaux 
dans une spécification économétrique nécessite des choix conceptuels et 
méthodologiques importants. A ce titre, les approches itératives spécifique-au-
général ou général-au-spécifiques présentées dans la section 1.2 réduisent l’étude 
des effets de spillovers spatiaux à un simple sous-produit issu d’une sélection de 
spécifications guidée par des critères statistiques et un ajustement aux données, au 
détriment d’une identification solidement ancrée dans des modèles économiques ou 
des scénarios de transmission plausibles.  

 
Il convient donc de ne plus recourir à ces approches mais d’enraciner les modèles 

de spillovers spatiaux dans la théorie, qu’elle soit économique, sociologique, ou issue 
d’autres disciplines (écologie, etc.). Les fondements microéconomiques du 
comportement des agents économiques, tels que des fonctions de réaction de Nash, 
les modèles de réseaux sociaux économiques, peuvent par exemple être mobilisés 
pour expliciter les mécanismes d’interaction, de concurrence et de diffusion (voir 
notamment Agrawal et al., 2022, pour les modèles de fédéralisme fiscal). Ces 
modèles permettront par ailleurs de justifier et d’intégrer des matrices de 
connectivité potentiellement endogènes. L’analyse économétrique doit également 
modéliser très précisément l’hétérogénéité inobservée et justifier clairement les 
hypothèses faites en termes d’exogénéité des variables et des éventuels instruments 
utilisés.  

 
A contrario, si l’objectif est d’identifier des relations causales entre variables 

géolocalisées,  (impact du capital humain sur la croissance économique ou des effets 
d’une population supplémentaire sur les dépenses de fonctionnement d’une 
commune par exemple), à l’aide de méthodes d’inférence causale (méthodes de 
différences-en-différences, régressions sur discontinuité…), il convient d’éviter 
d’intégrer des termes renvoyant à des effets endogènes puisqu’ils ne peuvent être 
considérés comme des variables de pré-traitement. La littérature, notamment en 
bio-statistique, a développé des méthodes d’évaluation causale sous interférence 
(c’est-à-dire en présence de spillovers) qui pourront être mobilisées pour estimer 
les effets de traitements pertinents lorsque l’hypothèse d’indépendance entre les 
observations n’est pas satisfaite. Debarsy et Le Gallo (2025) rendent compte de cette 
littérature. 

2.2. Les enjeux liés au big spatial data et au spatial machine learning 

Le développement récent des données massives géolocalisées ou à haute 
résolution bouleverse profondément l’analyse et ouvre des perspectives inédites. 
Ces big spatial data (Wójcik, 2020) ne se distinguent pas seulement par leur volume, 
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leur variété ou leur vélocité : elles permettent de documenter les comportements 
individuels et collectifs dans l’espace avec une finesse sans précédent, rendant 
possible une modélisation plus précise des interactions et des dynamiques spatiales. 
Dès lors, la mobilisation d’algorithmes de spatial machine learning permettront de 
tirer parti de ces données massives et d’enrichir la modélisation économétrique des 
données spatiales. 

 
Dans le champ de l’inférence causale, l’essor des méthodes de machine learning 

a déjà produit des avancées considérables (Athey, 2019 ; Brand et al., 2023) : ces 
outils peuvent être mobilisés pour estimer des effets de traitement hétérogènes, 
construire des contrefactuels plausibles, ou encore améliorer la robustesse des 
estimations dans des environnements complexes et riches en données. L’intégration 
des algorithmes supervisés ou non supervisés à l’évaluation causale a permis de 
dépasser certaines limites des approches économétriques traditionnelles, en 
articulant identification et flexibilité prédictive. 

 
Face à ces enjeux, l’économétrie des données spatiales est appelée à dialoguer plus 

étroitement avec ces développements, qu’il s’agisse d’identifier les interactions 
spatiales ou d’analyser des relations économiques mobilisant des données géo-
localisées. L’intégration de techniques issues de la science des données   ̶  algorithmes 
distribués, méthodes de sélection automatisée des structures de voisinage, modèles 
semi-paramétriques incorporant des effets non linéaires locaux   ̶  ouvre ainsi la voie 
à une nouvelle génération d’outils. Les approches de spatial machine learning (Credit, 
2024), en particulier, offrent un potentiel considérable pour détecter des clusters, 
identifier des hétérogénéités locales, ou encore estimer des interactions spatiales 
complexes qui échappent aux spécifications usuelles.  

 
CONCLUSION 

 
Ce court article a pour objectif de fournir un point d’étape sur les enjeux 

d’identification des interactions spatiales entre agents, territoires et politiques à 
l’heure des données massives. Si les modèles structurels comme le SDM offrent une 
formalisation puissante des interactions, ils se heurtent à des défis complexes 
d’identification, de choix de la matrice de connectivité spatiale et d’intégration de 
l’hétérogénéité spatiale. Par ailleurs, l’émergence du big spatial data et des 
algorithmes de spatial machine learning constituent une opportunité unique 
d’enrichir à la fois les méthodes et les champs d’application. 
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Spatial data econometrics: identification issues and perspectives 

 
Abstract - This article presents a reflection on the field of spatial data econometrics, 
emphasizing identification issues of spatial interactions and the perspectives opened by the 
development of geolocated big data. This branch of econometrics enables the analysis of 
phenomena in which geographic proximity, neighborhood interdependence, and territorial 
heterogeneity are structuring factors. While standard models   ̶  such as SAR and SDM  ̶  
allow for the formalization of spatial interactions, their empirical implementation raises 
major identification challenges. Rigorous identification of spatial effects requires clarifying 
the nature of interactions, addressing endogeneity concerns, and disentangling spatial 
dependence from spatial heterogeneity. The paper then discusses the challenges that 
spatial interactions econometrics methods must address, both within a structural 
methodological approach and in causal inference models, while also considering inference 
methods developed in other branches of econometrics. Finally, it highlights that the rise of 
big spatial data and spatial machine learning algorithms represents a decisive opportunity 
to overcome certain limitations in current modeling. 
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