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Abstract - Research in the field of agricultural policy often calls for an explicit
representation of geographical aspects of the country or region under
consideration. Furthermore, in connection with environmental issues one has to
account for spatial interactions, for example in connection with water flows or
erosion processes. However, this inevitably leads to the problem that all data
needed for estimation are not available at all points. The paper addresses this
issue and presents, for a spatial model, an interpolation procedure by maximum
likelihood estimation. In this model, the spatial interactions are represented
through an autoregressive scheme whereby the value of a given endogenous
variable at one point depends among others on the value of the same variable at
adjacent points. This procedure is referred to as an (autoregressive spatial)
interpolation because the model yields, among others interpolation 'forecasts' for
missing data. To effectuate the estimation, the paper suggests the use of a
constrained mathematical program, rather than of a standard statistical routine,
as this enables the user to keep a more clear distinction between likelihood
function, the autoregressive model, the constraints on parameters and the
restrictions implied by the available data.
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INTRODUCTION

There is an increasing recognition of the need for an explicit representation
of geographical aspects within agricultural policy studies. One reason for this is
that land utilization and land cover change are perceived as key elements in the
process of global climate change, another that the analysis of environmental issues
e.g. those related to excessive fertilization and water pollution needs spatial
referencing because the damages strongly depend on the natural conditions at
micro-level (IGBP/HDP 1995).

The quantitative models used in agricultural policy studies usually introduce
the geographical dimension by describing crop and livestock production at the
national, regional or farm level. The standard practice of making agricultural
policy models more explicit geographically is to refine the level of regional
aggregation from say, the provincial level to the district or village level. In such
studies, spatial interaction is at best incorporated on the economic side, via
transportation flows of commodities, migration of labour and market clearing
processes. At the same time these models do not incorporate any spatial interaction
at the biophysical level: the biophysical relationships for crop and livestock
production that apply in one location do not contain any (endogenous or
exogenous) variables from other locations.

Indeed, as long as the natural conditions remain constant and do not have to
be quantified explicitly, there is little need to account for such interdependence, as
agricultural output in one location will only depend on the inputs applied by the
farmers of that same location. However, once pollution or climate change are
thought to affect the natural conditions under which crops and livestock have to
grow, via winds, water flows etc., the spatial interactions in the biophysical sphere
have to be addressed and this calls for a representation within a spatial model, not
only a spatial database. However, this type of model will be very demanding in
terms of data requirements, and this requires methods of model estimation that can
deal with spatially incomplete data sets, i.e. that can deal with spatial interpolation.

It will be the objective of the present paper to specify a procedure for
estimating, by a maximum likelihood (ML-) method, a spatial model of physical
interactions, for such a case of missing observations. While this spatial model will
be cast in a general form, it will cover the special case of a yield function for a
given crop, that relates harvestable output per hectare at a particular location to
both the inputs that are applied by the farmer and the natural conditions that
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prevail at this location, which are not independent from those in the
neighbourhood. The general model will be given an autoregressive form, where the
value of a given variable at one location depends among others on the value of the
same variable at adjacent locations.

To solve the optimization problem of this ML-estimation, we work directly
with a constrained mathematical program rather than reducing the problem to a set
of first-order conditions, which are eventually, after elimination of as many
variables as possible, solved as a system of nonlinear equations with the
parameters to be estimated as unknowns. Such a 'concentrated' approach would
have the merit of reducing the dimensionality of the problem but has as it
drawback a in modularity and sparseness of representation. Concentration yields
formulas of great complexity, where matrix inverses abound (see e.g. Cressie,
1993, chapter 3) and where sparseness of representation is lost because the inverse
of a sparse matrix is usually non-sparse. In contrast, a programming approach
makes it possible to maintain a clear distinction between the likelihood function,
the autoregressive model, the constraints on parameters and the restrictions implied
by the available data. It will be shown that a wide array of model specifications can
be accommodated in this manner.

The paper proceeds as follows. In section 1 we introduce the general form of
the autoregressive spatial model we shall be concerned with. Section 2 introduces
four extensions: (i) monotonic (e.g. logarithmic) transformations of the
endogenous variable, (ii) the case where the covariance of error terms is unknown,
(iii) the treatment of aggregate information say, on the regional average over a set
of points, and (iv) the representation of endogenous variables that are not, or only
in part, spatially correlated. Section 3 is devoted to a comparison with two
competing approaches, co-kriging and generalized least squares which are widely
used in geo-statistics. Section 4 sketches a possible application to the modelling of
agricultural supply within a spatial setting. Section 5 concludes. Three aspects of
practical implementation are considered in the Annex: imposing restrictions on
parameters, solving the program and computing the asymptotic covariance matrix.

1. GENERAL FORMULATION

1.1. The spatial model

Suppose that we are given a set of observations on various variables
sampled at geographically referenced points (by latitude and longitude). These
variables measure altitude, temperature, radiation, length of growing season,
agricultural yields, fertilizer applications etc. Their coverage over the map of the
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country or region under study is uneven and differs across variables.

We distinguish R sites, indexed r and J exogenous site-related variables xjr,
indexed j and r. Among the site-related variables we take j = 1, 2, 3 to denote
latitude, longitude and altitude, respectively and j = 4 as the unit element for the
regression constant. We assume that data are available for all xjr. We also define K
endogenous variables qkr at every point r as well as the observation set G and
observations ykr of qkr that are supposed to be available for all kr � G. Finally, we
introduce the error variable ukr defined for kr � G. The simplest model will abstract
from spatial autocorrelation and be written as:

qkr = Σj Bkjxjr for all kr (1.1a)
ykr = qkr + ukr for all kr � G (1.1b)

The estimation problem is now to find a numerical value for the parameters B that
provides  a  good  fit  to  the  data  which  are  available   (say,  minimizes
Σkr�G u kr

2 ). Once this value has been computed, interpolation merely amounts to
calculating qkr for all kr � G, using (1.1a).

Model (1.1) is common in trend surface analysis, where the set of exogenous
variables usually includes various nonlinear transformations of the original data as
well as higher order polynomials. However, this type of regression is often found
unsatisfactory because a good fit requires such a large number of parameters that
significance of the estimates becomes very low. Autoregressive models tend to
offer greater flexibility for fewer parameters. The basic spatial autoregressive
model may be viewed as an extension of (1.1) and reads as:

qkr = Σk′r′Akr,k′r′qk′r′ + Σj Bkjxjr for all kr (1.2a)
ykr = qkr + ukr for all kr � G (1.2b)

where, for the diagonal, Akr,kr = 0. For the autoregressive term Σk′r′Akr,k′r′qk′r′ we
shall assume that every qkr depends on qk′r for k′-values other than k and on qkr′ for
selected r′-values (neighbouring locations). Further details will follow in section
2.1 below. Note that, due to the autoregression, the value of qkr depends on the
missing values for endogenous variables. Therefore, the issues of parameter
estimation and interpolation will have to be addressed simultaneously. We can now
write (1.2) in matrix form as:
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q = Aq + Bx (1.3a)
y = Tq + u (1.3b)

where A is the KR∞KR-matrix with elements Akr,k′r′ and B the KR∞JR-matrix
with elements Bkj for every r. Note that the variables in the constraint do not carry
the subscript r.1 This enables us to represent cross effects among variables at a
given point, as well as cross effects among points (spatial effects). The known
matrix T describes the data structure by mapping endogenous variables to
observations. In its simplest form, it has: Tkr,kr = 1 for kr � G and 0 otherwise. In
section 3.3 we give a more general interpretation. The row dimension of T and the
dimension of the vectors u and y correspond to the number of members of the set
G. If all observations are missing for a given variable, the variable is said to be
latent. We complete the specification of the basic model by allowing for a more
general specification of errors:

y = Tq + Pu (1.3b')

where P is a given square nonsingular matrix. It is important to note that in this
model the error Pu only bridges the gap between the observation y and the model
generated value Tq. In (1.3a), there is no error on q itself. Assuming [I-A] to be
nonsingular, we may write this equation in explicit form as:

q = [I-A]-1Bx (1.4)

Note that the matrix A can contain up to (K∞R)∞(K∞R) unknown
coefficients, which exceeds by far the number of observations that are available.
Hence, some structure has to be imposed on this matrix. This can be achieved by
requiring equality among coefficients, or by treating the effect as a function of
distance, or by allowing for effects from direct neighbours only. Thus, A and B
will be treated as given functions of parameters θ. Yet if these functions are not
well specified, some of the coefficients in θ and possibly some of the interpolated
values qkr will remain unidentified.

                                           
1 The autoregression problem in space differs from the one in time in at least three respects: (i) the
time-axis is one-dimensional but space is two- or three-dimensional; (ii) along the time-axis
observations are usually available at regular intervals (weeks, months, years), whereas in space the
grid of points where data are collected is irregular and differs across variables; (iii) since the time-
axis has a natural orientation from past to future, points for which observations are available are
located in one subset (the past) that is well separated from the points where this is not the case (the
future); in a spatial context the two are in general intermixed.
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1.2. Least squares estimation

Least squares estimation of the parameters θ would lead to the program:

min 1/2 u′u
q, u, θ

subject to (1.5)
[I-A(θ)]q = B(θ)x
y = Tq + Pu
θ � Θ

where ′ denotes the transpose and the variables below the maximand are the choice
variables; y does not appear in the list, since it is given. When fitting a model to
available data, several criteria other than the sum of squared errors could be
chosen, for example the sum of absolute values of errors. Yet least squares has the
particular virtue of yielding parameter estimates that, under narrowly defined
conditions [i.c. u is normally distributed as u ~ N(0, σ2I)], coincide with those
obtained from maximum likelihood (ML-) estimation.

1.3. Maximum likelihood estimation

However, if these conditions do not hold, as is often the case in applications,
one has to deal with the maximum likelihood problem itself, which may also be
written as a mathematical program but has a more complicated objective function.
We review the main steps of the ML-approach in relation to autoregression and
interpolation (see e.g. Greene, 1991) for a more general treatment). In the standard
case, the ML-approach starts from:

(i) a given observation y,
(ii) a deterministic model ys = F(x, θ) with unknown parameters θ � Θ,
(iii) an error term e = y - ys with a postulated likelihood density function

L(e; θ) which assigns a likelihood to an error e, given a value θ for the
parameters).

If the assumed distribution for e is normal with mean zero and given
covariance matrix Ω, the θ in L(e; θ) can be dropped. In terms of (1.5), one may
write e = Pu, where u ~ N(0, σ2I), and, therefore, e ~ N(0, σ2PP′). The aim of ML-
estimation is then to find a value for θ that maximizes the likelihood of the
observation y i.e. maximizes the density L(y; ys, θ) which corresponds to the
density L(e; θ) of e. Since in (iii) above, the error term was assumed to be additive,
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the relation between the two is straightforward and L(y; ys, θ) = L(y - ys; θ). Thus,
the program for ML-estimation may be written as:

max L(e; θ)
ys, e , θ

subject to (1.6)
ys = F(x, θ)
y = ys + e
θ � Θ

Besides the difference in objective and error term, program (1.5) differs
from (1.6) in two respects. First, (1.5) has autoregression. This can be incorporated
in the ML-program by specifying the (deterministic) model as an implicit function
H(ys, x, θ) = 0; it will be assumed that, at all values θ � Θ, the implicit function
H(⊇) meets the requirements of the implicit function theorem and defines the
explicit, function ys(x, θ), which is continuously differentiable in θ. Such a
requirement was already reflected in the nonsingularity assumption for [I-A(θ)].
Secondly, in (1.5) observations may be missing, as represented via the matrix T.
To incorporate this in the deterministic model, we replace H(ys, x, θ) by H(q, x,
θ) and the ML-program becomes:

max L(e; θ)
q, ys, e, θ

subject to (1.7)
H(q, x, θ) = 0

 ys = Tq
y = ys + e
θ � Θ

As a third extension, let us briefly investigate the implications of accounting
for errors in independent variables. So far, the vector x denotes the exogenous or
independent variables, i.e. the variables not explained by the model, and is
assumed to be nonstochastic. Clearly, for items such as latitude, longitude or
altitude, such an assumption seems appropriate but for other independent variables,
errors of measurement may have to be considered.

The situation with errors in the independent variables may be represented by
treating q as referring to all stochastic variables, both the dependent and the
independent ones. Now ys will no longer be determined uniquely by the
deterministic model (for given values of x and θ), as the number of stochastic
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variables will for a well specified form exceed the number of equations. This
makes it impossible to derive the explicit form of the likelihood function for y
from the assumed likelihood of u and the constraints. Two approaches may be
followed to overcome this difficulty. The first and most common one is to restore
uniqueness by defining a data generating process (additional equations) for the
independent variables that have errors. This is usually implemented either by
specifying some autocorrelation process (with ykr at point r assumed to be
dependent on its value at other points), or via instrumentalization (treating ykr as
dependent on xjr or on yk′r at the same point). The second approach treats the
systematic part of the independent variables as a parameter that is to be estimated.
A distinction is often made between dependent variables y, observed independent
variables with errors z and given, nonstochastic values x. The error term v on z is
usually assumed to be uncorrelated with the error term e on y. Program (1.7) may
now be rewritten with the sum of the log-likelihoods Le(e; θ) of e and Lv(v; θ) of u
as objective:

 max Le(e; θ) + Lv(v; θ)
q, v, ys, zs, e, θ

subject to (1.8)
H(q, zs, x, θ) = 0

 ys = Tq
y = ys + e
z = zs + v
θ � Θ
Note that for  any given feasible  triple (zs, x, θ), the constraint H(q,

zs, x, θ) = 0 of this program will define the continuously differentiable function
ys(zs, x, θ). Thus, the likelihood function satisfies L(y; ys, θ) = L(y-ys; θ) as before.
In practical terms, program (1.8) treats the independent variable z as 'soft',
allowing some deviation of zs from z, so as to improve the likelihood Le(e; θ), as
long as this outweighs the deterioration in Lv(v; θ). Yet we should mention that, in
spite of all these refinements, the above formulations all postulate a given
functional form for the likelihood functions Le(e; θ) and Lv(v; θ), without
indicating how to arrive at a correct specification. This would require a study of
the data generating processes, which falls outside the scope of this paper.
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2. THREE EXTENSIONS

2.1. Monotonic transformations

Generalizations of (1.5) such as in programs (1.7) and (1.8) fit relatively
easily within the approach discussed so far, because they maintain an additive error
term. Modifications in the specification of this error term require an adjustment in
the likelihood function. Consider the monotonic transformation g(ykr, ζ) with
unknown parameter ζ, which we denote in vector-form by g(y, ζ), which may for
example be the exponential mapping exp(ζy). The relation between model and data
as in (1.3b) is then represented by:

g(y, ζ) = Tq + e (2.1)

This change leads to a modification of the likelihood function for y, since
the identity L(y; ys, θ) = L(y - ys; θ) no longer holds and least squares will not be
ML. Let g′(ykr, ζ) denote the absolute value of derivative of g(ykr, ζ) with respect
to ykr. The concentrated log-likelihood (Greene, 1991, p. 344) now becomes:

Lc = Σkr�G ln |g′(ykr, ζ)| - N/2 (1+ln(2π)) - N/2 ln(1/N u′u) (2.2)

where N is the number of elements kr in G and |.| denotes the absolute value. This
function can readily be treated as maximand of a nonlinear program.

2.2. Unknown covariance

Least squares also ceases to be ML if the covariance among error terms is a
function Ω(θ) with unknown parameters. For e = P(θ)u, one gets  Ω(θ) =
σ2 P(θ)P(θ)′ and:

ln L = - N/2ln(2π) + 1/2ln σ2 - ln|P(θ)| - 1/(2σ2) u′u (2.3)

where the term |.| denotes a determinant, which is a cumbersome, nonconcave
function. The following linear approximation avoids it:

ln|P(θ)| V -(P′( ˆ θ )∂P( ˆ θ )/∂θ)(θ- ˆ θ ) + ln|P( ˆ θ )| (2.4)

since ∂ln|P|/∂P = -∂ln|P-1|/∂P = -P′. In a procedure like (2.3), this approximation
can be substituted in the objective as one proceeds through a sequence of
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programs.

2.3. Combining point data with regional averages

So far, we were only concerned with situations where the data on ykr are
either available (ykr � G) or not available and this led to a particularly simple
structure for the matrix T. In practice, the situation is often more complex because
additional data are available say, on aggregates (over k and/or over r) say, regional
averages. For example, one map may provide information on land cover by forest
while the other distinguishes particular types of forest. One statistical source may
give average rainfall in a region, while the other reports on the rainfall at a
particular point. In principle all these data can be expressed in terms of the most
detailed elements via the matrix T that links variables q to observations y and the
specification (1.5) actually covers this case already. In this context error
specification deserves special attention, as the variance of the average can hardly
be taken to be the same as for isolated points. We add that it is easy to extend the
specification so as to allow for inequality constraints on q, so as to define
acceptable ranges. This is of special relevance at boundary points, where the
autoregressive structure is somewhat artificial.

2.4. Restrictions on autocorrelation

Restrictions on parameter sets may be used to rule out specific
autocorrelation patterns, either spatially or across variables at the same point (see
also section A.1). Yet this is not a very flexible approach. Suppose for example
that the soil type is known to differ significantly between two neighbouring points.
Ruling out all spatial correlation say, between the crop yields attainable under
identical input use (e.g. fertilizer and labour) at these two points may be as
unrealistic as postulating a spatial correlation according to model (1.3a). What one
would like in this case is to correct the effect of autocorrelation for the variation in
soil type. For this, one may modify equation (1.3a) into:

[I-A(θ)](q-M(θ)x) = B(θ)x (2.7)

where M(θ)x is the correction term, such that (q-M(θ)x) is the effect that can be
transposed to other points (say, the yield corrected for soil specificity). If M(θ) is
linear in θ, the bilinear structure will be maintained and computation can proceed
as in (2.3).

3. A COMPARISON WITH ALTERNATIVE METHODS

3.1. Co-kriging
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We compare program (1.5) with the formulation of the co-kriging model.
Co-kriging is widely used in spatial statistics, mainly to explore the structure of
multivariate spatial information and to perform interpolation, rather than a means
of estimating a particular simulation model. For example, Goovaerts (1992) applies
a principal components method to a spatial data set. The co-kriging model in Stein
(1991) uses the approach for interpolation and considers a partition of the index set
K into K1 and K2, where K1 refers to the variable to be predicted, for which the
observations set is G1, and K2 to co-variables with observation set G2. The model
is:

y = Cx + e (3.1)

where e has mean zero and given covariance Ω, and the elements of depend on the
distance between the points. For given covariance, the maximum likelihood
estimator C can be obtained by generalized least-squares as:

min 1/2 e′Ω-1e
e, θ

subject to (3.2)
y = C(θ)x + e

or
ˆ θ  = (X′Ω-1X)-1 X′Ω-1y

where X is the R∞J matrix with xj as the j-th column and θ is the vector consisting
of the elements of the matrix C. We can rewrite (3.2) into a form that more closely
resembles (1.5). Let P be such that Ω = PP′. For positive definite Ω, it is possible
to derive P from Ω and write:

min 1/2 u′u
q, u, θ

subject to (3.3)
q = C(θ)x
y = Tq + Pu

Here also, the use of the possibly sparse matrix P enables us to avoid matrix
inversion. As long as P is taken as given, least-squares will yield a maximum
likelihood estimator but if P is treated as a function of say, θ, this property will be
lost and maximization of the (possibly concentrated) log-likelihood function must
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be the objective, as in section 2.2. It may be added that the form (3.3)
automatically yields the interpolations. The form also makes it clear that whenever
interpolation is to take place at a new point, the full system will have to be re-
estimated (as for (1.5) unless a particular recursive structure is assumed to hold for
P, e.g. if it has zero off-diagonal elements in the column corresponding to the new
point. Such an assumption is implicit in Stein (1991) and various other applications
of co-kriging. In applications, the variogram matrix P-1 (or the covariance Ω) is
usually obtained from preliminary calculations with a model for the spatial
variability of y. In this respect practices are similar to those of time-series analysis,
where the type of autoregressive scheme is often determined by inspection of the
data prior to ML-estimation. Such techniques may also be applicable to obtain
initial estimates of error term distributions under ML-estimation.

3.2. Generalized Least Squares

A second alternative is Generalized Least Squares (GLS), for which the
program may be written as:

min 1/2 e′Ω-1e
e, θ

subject to (3.4)
y = A(θ)y + B(θ)x + e

Solution could proceed by elimination of the constraints via out-substitution
of e in the objective. The GLS approach differs from the program (1.5). A
comparison will enable us to summarize the main characteristics of the approach
proposed in this paper. We note the following differences:

− The covariance matrix. GLS uses the inverse covariance matrix, while
(1.5) has Pu in the constraint. This difference is only apparent since working with
e′Ω-1e in the objective and error e in the constraint is, for positive definite Ω,
equivalent to having u′u in the objective and Pu in the constraint, for Ω=PP′.

− Endogenous variables as choice variables of the program. The
endogenous variable y no longer appears in (3.4). The variable q (= y) is treated as
exogenous. This was possible because all data are supposed to be available.

− Specification of the error term. The specification of the error term is
different, and this reflects the treatment of y as an exogenous variable.
Consequently, the model cannot be used for obtaining an (unbiased) estimate of y-
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values for x-values outside the sample.

Note that the form y = A(θ)(y-e) + B(θ)x + e, as in (1.5) makes it possible to
maintain the equation y = q + e and estimate. However, by the same token it
becomes impossible to eliminate the constraint without having to deal with the
large-scale, non-sparse inverse [I-A(θ)]-1. This explains the need to maintain the
constraints of the optimization program, rather than eliminating them via
substitution, not only when formulating the estimation problem but also at the
stage of computation.

4. AGRICULTURAL MODELLING

The specifications discussed so far are very general. The model (1.3a) is a
linear form of the even broader formulation in (1.7). A large number of practical
applications would fit within this framework. As an example, we consider a
modelling framework for agricultural production applicable say, at provincial
level, articulating it as follows:

(i) - Climate. Climatic conditions are represented through a spatially
correlated autoregressive system as in (1.3a). This generates a complete set of
values qkr for temperature, rainfall and other climatic variables that affect the
conditions for agricultural production. These values would also depend on the
exogenous variables xjr such a latitude, longitude, altitude and possibly also slope,
etc:

[I-A(θ)]q = B(θ)x (4.1)

(ii)- Land inventory. It is assumed that at location r, an area Lru is available
for land of quality u, where u = 1, ..., U. Hence, we associate to every point r with
coordinates x1r and x2r, the surfaces Lru, which may, for example, have (x1r, x2r) as
their point of gravity.

(iii) - Crop yield. Let crops be indexed c, with c = 1, ..., C. The yield of crop
c will depend on three factors: climatic conditions, soil conditions and cultivation
practices. We disregard any spatial interdependence, as the physiology of the crop
depends purely on local conditions which are supposed to be reflected fully in the
values of qr and xr and the soil type u. Hence, the yield relation may be written as:

sucr = Guc(qr, xr, vucr) (4.3a)
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where vucr is the vector with elements viucr denoting the quantity of input i (e.g.
labour or fertilizer) applied per hectare for cultivation of crop c at location; sucr is
the supply per hectare (or yield) of crop c on land type u at location r.

(iv) - Crop output and demand for inputs. Total crop output and input
demand follow as:

Sucr = sucr Lucr (4.3b)
Vucr = vucr Lucr (4.3c)

under the requirement that the land constraint has to hold:

Σc Lucr ≤ Lur (4.3d)

Equations (4.3a-d) typically represent the constraints of a standard farm
model for say, a revenue maximizing producer. Furthermore, to avoid full
specialization, additional restrictions will be required (see e.g. Folmer et al., 1995).

In this setup, two properties stand out. First, climatic variables are not
affected by cultivation practices but through a spatial interdependence that may
result from explicit unidirectional linkages e.g. through winds an water flows, as
well as from multidirectional proximity effects (dissipation). The matrix A(θ) can
be specified to account for such effects. Secondly, the assumption that crop yield
in function (4.3a) only depends on local conditions and inputs applied indicates
that we treat the 'farm' at location r as a non-spatial entity. This is appropriate if we
want to develop a model for a large geographical unit where the size of the
individual farm does not matter. In such a model the land availability Lur actually
refers to a large number of farms that are treated as identical. This is the relevant
scale for representing spatial variation in natural conditions.

In contrast, if we want to model the individual farm, the variation in climatic
conditions becomes irrelevant. Still, the spatial model may prove useful to account
for dissipation of inputs Vucr at various locations r on the same farm. The incidence
of such inputs on the farm then becomes part of the vector qr, while the initial
application is given in the vector xr in (4.3a). This makes it possible to represent
flows of water and nutrients both on the surface and within the soil. If in addition,
these variables are given a time-subscript, this also provides a way of representing
the spread of diseases, or a sequential harvesting of contiguous plots. The
autoregressive (4.3a) equation will now appear among the constraints of the farm
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model and may, moreover, be helpful in avoiding full specialization.

5. CONCLUSION

The main point of this paper has not been to advocate a particular spatial
model but to show how the constrained programming formulation makes it
possible to maintain a clear distinction between the likelihood function, the
postulated autoregressive model, the data structure and the parameter set. Applied
work to implement this approach is currently in progress. Estimation on a
nationwide climatic dataset for Nigeria has been completed and estimation of an
agricultural model similar to (3.3) is underway. The approach is also to be applied
shortly in a model that describes land utilization and land cover for Russia and
China (Ermoliev et al., 1996). In these applications the main practical advantages
appear to be that (i) the points where data are available do not have to lie on some
given grid, (ii) data on regional aggregates can be made use of, (iii) missing
observations can be estimated though interpolation and (iv) due to the flexibility of
the mathematical program, there is no need to remain within the confines of some
standard estimation routine and this make it relatively easy to incorporate
nonlinear forms, price dependence and other generalizations.

We conclude that, while it would obviously be wrong to state as a rule that
an agricultural model should be spatially explicit and account for spatial
interaction, the spatial approach seems promising in several respects. It provides an
opportunity to tap a wealth of geographical data without losing the geo-referencing
and the representation of spatial interactions after aggregations to provincial or
state level.

ANNEX:

IMPLEMENTATION OF THE ESTIMATION PROCEDURE

At least three steps must be taken to reach a practical implementation of
program (1.5) as an ML-estimation: (i) the functions A(θ) and B(θ) must be
specified; (ii) program (1.5) must be solved; (iii) procedures must be formulated to
characterize the optimum, in particular the reliability of estimates.

A.1. Restrictions on parameters
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We propose to specify A(θ) via a function that uses the values of the same
variable at neighbouring points as well as those of related variables at the same
point, as follows:

Akrk′r′ = κkr wrr′ + (1-κkr) αkk′ (A.1)

The first term relates to the spatial effect of the same variable k at other sites
r′ and the second to the local effect of other variables k′ at the same site. This
specification reflects interpolation in a geometric sense: a value ykr may be seen as

a weighted average of an interpolation y
∪

kr = Σr′ wrr′ ykr′ and a 'local' estimate
˜ y kr = Σk′ αkk′ yk′r + Σj Bj xjr. There are thus two weights: the weight κkr between
local and neighbouring effects and the weights wrr′ among neighbours.

We also impose numerical restrictions on these parameters:

(i) zero diagonal: αkk = 0 and wrr = 0 for all k and r;
(ii) spatial weight: Σr′ wrr′ = 1 for all r;  
(iii) contraction: Σk′ |αkk′qk′| < qk for all k and qk positive.

Condition (i) is an obvious requirement to avoid 'self-regression'. Condition
(ii) follows from the interpretation as a weight. The contraction condition (iii)
guarantees that the dominant eigenvalue of the matrix A will not exceed unity. It is
imposed to ensure that spatial effects dampen out. We may assume that the effect
of differing units of measurements across k has been eliminated either by a change
in units or by taking the logarithms of all variables (see also section 3.1) and for
convenience we also require that condition (iii) holds for qk = 1, to maintain
linearity of the parameter set.

A.2. Computing the optimum

Program (1.5) will typically contain various nonconvexities and this makes
it necessary to devise practical ways of solving it iteratively, because a direct
calling of some mathematical programming algorithm will seldom prove effective.
Here we propose to exploit the bilinear structure of the model (the A(θ)y is a
bilinear form due to the linearity of A(θ) and solve a sequence of simpler
programs, which read as:

min 1/2 u′u
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q, u, θ
subject to (A.2)

[I-A(θ)] ˆ q  - B(θ)x + [I-A( ˆ θ )]q - B( ˆ θ )x = 0
y = Tq + Pu
θ � Θ

where ˆ q  and ˆ θ  are given estimated values. For a linear specification of A(θ) and
B(θ), program (A.2) will have linear constraints and a quadratic objective, a form
that can be solved easily. It yields an update for θ as well as values for u and q. A
fixed point will have been obtained when the new value of θ will coincide with the
ˆ θ  that was entered into (A.2). Next, when a value θ − ˆ θ  ≤ e has been reached, we

solve for given ˆ θ , the program:

min 1/2 u′u
q, u

subject to (A.3)
[I-A( ˆ θ )]q = B(θ)x
y = Tq + Pu

This will yield a feasible solution for program (1.5). The algorithm should
converge quickly when started from there, since at θ = ˆ θ  an optimum of (A.2) is
also a stationary point of (1.5). More generally, if the model is nonlinear, as may
be the case in programs (1.7) and (1.8), it is practical to proceed via a sequence of
quadratic programs, that perform a quadratic approximation for the log-likelihood
and a linear approximation for the function H(⊇).

a.3. The covariance matrix

If we assume that after appropriate testing, the constraint on θ is nonbinding
i.e. lying in the strict interior of Θ, we may start from equation (1.7) and
differentiate it with respect to θ and calculate the associated derivative for ys:

∂H/∂q dq/dθ + ∂H/∂θ = 0 (A.4.a)
dys/dθ = Tdq/dθ (A.4.b)
du/dθ = -P-1dys/dθ (A.4.c)

After defining the matrix F = -du/dθ, we can calculate the asymptotic
covariance matrix V for θ (see e.g. Davidson and MacKinnon, 1993, chapter 2) as:
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V = ˆ σ 2 [F′F]-1 (A.5)

where, ˆ σ 2  = 1/N u′u, (for N equal to the dimension of y) or possibly 1/(N-
H) u′u, for H equal to the dimension of θ, to correct for degrees of freedom. From
there, we can compute the covariance matrix of the interpolated values as:

W = (∂q2(θ)/∂θ) covar(θ) (∂q2(θ)/∂θ)′
or

W = ˆ σ 2 F2[F′F]-1F2′ (A.6)

where the rows of the matrices ∂q(θ)/∂θ and F are assumed to have been
partitioned in two blocks, the first corresponding to kr-values for which
observations are available and the second, with subscript 2, corresponding to the
interpolated values. It must be emphasized that W is the covariance of q(θ) only,
without allowance for errors at points where no data are available. If we assume
that P is the unit matrix and that there is an error of measurement with estimated
variance ˆ σ 2 , for every kr � G, the variance becomes:

W = ˆ σ 2 (I + F2[F′F]-1F2′) (A.7)

Now if we assume that some constraints on θ were binding (say, those
associated with condition (iii) in section A.1), the set Θ will consist of the
constraint:

Mθ = m (A.8)

To compute the covariance one should partition the matrix M and the vector
θ into 'basic' and 'nonbasic' parts θB and θN, and treat the basic variables as a
function of the nonbasic ones to obtain a function ˜ θ (θN):

˜ θ B(θN) = MB
−1(m-MNθN)        (A.9.a)

˜ θ N(θN) = θN        (A.9.b)

Relation (A.4.a) will now become:
∂H/∂q dq/dθN + ∂H/dθ ∂ ˜ θ (θN)/∂θN = 0
(A.10)
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Further calculations proceed as in (A.4)-(A.6) but with FN instead of F. The
linear matrix equation (A.4.a) or (A.10) and the inverse V can be obtained by
solving a linear program that treats the matrix equation as constraint and minimizes
the sum of slacks on these equations. While such a procedure may appear like a
roundabout way for solving a simple problem, it enables us to take advantage of
the sparse and numerically stable implementations that are available for various
linear programming algorithms. We have seen that this is of special relevance in
the context of spatial analysis, where the autocorrelation patterns tend to generate
large and sparse matrices. If space limitations restrict the size of the linear program
that can be handled, one may process groups of elements of θ in sequence.
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Résumé

La recherche en matière de politique agricole exige souvent un traitement
plus ou moins détaillé de données sur la géographie du pays ou de la région en
cause et si cette recherche a trait à l'environnement, il faudra également tenir
compte de certaines interactions entre les unités géographiques, par exemple de
débits fluviaux ou d'érosion. Toutefois, plus l'analyse contiendra de détail
géographique, plus il sera difficile, voire impossible, d'obtenir une base de
données complète. Cet article s'adresse à cette question et décrit, pour un modèle
spatial, une procédure d'estimation par interpolation à vraisemblance maximale.
Dans ce modèle, les interactions spatiales sont représentées par des équations
autorégressives dans lesquelles la valeur d'une certaine variable dans une localité
dépend entre autres de la valeur de cette même variable dans les localités
adjacentes. On appellera cela une interpolation (spatiale autoregressive) pour
indiquer que ce modèle calcule entre autres des 'prévisions' interpolées pour les
données non disponibles. Pour préserver une distinction nette entre la fonction de
probabilité, le modèle autoregressif, les contraintes sur les paramètres et les
restrictions qui résultent de la non-disponibilité de certaines données, la méthode
proposée fait appel à un programme mathématique plutôt qu'à une routine
statistique ordinaire.

Resumen

El estudio en materia de política agrícola exige a menudo, un tratamiento
màs o menos detallado de los datos sobre la geografía del país o de la región en
causa; y si este estudio trata del medio ambiente, tendremos que tener en cuenta
ciertas interacciones entre las unidades geográficas, por ejemplo los caudales
fluviales o la erosión. De todas maneras, mientras màs detalles geográficos
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contiene el análisis, màs difícil será, ver imposible, obtener una base de datos
completos.

Este articulo se refiere a esta pregunta y describe, para un modelo espacial,
un proceso de estimación por interpolación a máxima verosimilitud. En este
modelo, las interacciones espaciales son representadas por las ecuaciones
autoregresivas en las cuales, el valor de cierta variable en una localidad depende
del valor de esta misma variable en las localidades adyacentes.

Lo denominaremos interpolación (espacial autoregresiva) para indicar que
este modelo calcula las previsiones de interpolación para datos aùn, no
disponibles. Para preservar una clara distinción entre la función de probabilidad,
el modelo autoregresivo, las obligaciones sobre los parámetros y las restricciones
que resultan de la indisponibilidad de ciertos datos, el método propuesto nos hace
pensar màs bien a un programa matemático qué a una rutina estadística
ordinaria.


