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1. INTRODUCTION 
 

The bulk of studies on European regional convergence refer to the basic 
Barro-Solow regression model (Magrini, 2004). This model explains cross-
sectional differences in per-capita GDP growth rates through a set of variables 
that includes initial per-capita GDP levels and other control variables that 
'maintain' constant the steady state of each economy. Here, we claim that this 
approach can be criticized from at least two different points of view.  

 
First, it does not consider the presence of spatial dependence. As is well 

known, regional data cannot be regarded as independently generated because  
of the presence of similarities among neighbouring regions (Anselin, 1988; 
Anselin and Bera, 1998). As a consequence, the standard estimation procedures 
employed in many empirical studies can be invalid and lead to serious biases and 
inefficiencies in the estimates of the convergence rate. Recently, some empirical 
studies have used the spatial econometric framework for testing regional 
convergence in Europe (Le Gallo et al., 2003).  

 
Second, most of empirical studies on European regional growth have 

implicitly assumed that all regions obey a common linear specification, disre-
garding the possibility of non-linearities (or multiple regimes) in growth 
behaviour. The issue of multiple regimes has instead been raised in some cross-
country growth studies (Durlauf and Johnson, 1995; Liu and Stengos, 1999) that 
make use of non-parametric or semi-parametric approaches to model the 
regression function. In these studies, however, spatial dependence did not 
represent a critical issue. Here, we claim that especially in cross-region studies, 
multiple regimes and spatial dependence must be simultaneously considered1. 
 

The aim of this paper is to reconcile these two critical points. Thus, we 
propose a semi-parametric spatial-covariance model of regional growth 
behaviour in Europe, which simultaneously takes account of the problems of 
non-linearities and of spatial dependence. In Section 2, we discuss the two 
critical points. In Section 3, we propose a new semi-parametric spatial auto-
covariance specification of the growth regression model. In Section 4, we report 
the results of the econometric analysis of regional convergence based on a data 
set of 161 EU-15 regions for the period 1988-2000. Some conclusions are 
reported in Section 5.  
 
 

                                                                                                 

1 Even in cross-country growth studies spatial autocorrelation can be very important, as suggested, 
for example, by Moreno and Trehan (1997). 
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2. SPATIAL DEPENDENCE AND MULTIPLE REGIMES  
IN CONDITIONAL β-CONVERGENCE STUDIES 

 
2.1. Conditional β-convergence 
 

The notion of conditional β-convergence arises from the neoclassical 
growth model based on the assumptions of (among others) a convex production 
function with constant return to scale, a closed economic system, and labour 
market clearing (Barro and Sala-i-Martin, 1995). The basic idea is that the long-
run economic growth can be described by a steady state balanced path. In the 
short run, economies (countries or regions) that have not yet reached their steady 
state show higher growth than economies closer to the steady state. If steady 
states are similar between economies, convergence is unconditional; when the 
steady states differ, convergence becomes conditional upon control variables 
such as physical and human capital and population growth (Mankiw et al., 
1992). The conditional β-convergence hypothesis is therefore tested by simply 
estimating the following model: 
 
(1) εφ += Xg  
 
where g is the per-capita GDP growth rate, X is a vector of variables including 
the initial per-capita GDP as well as the control variables, ε is a vector of normal 
i.i.d. error term. The unknown vector of parameters φ is generally estimated by 
OLS. Conditional convergence is said to be favoured by the data if the estimate 
of the parameter on the initial per-capita GDP is negative and statistically 
significant. 
 

Here we claim that this approach can be criticized from at least two 
different points of view: first, the closed-economy hypothesis; and second, the 
hypothesis of a common linear specification without multiple regimes2. 
 
2.2. The open-economy assumption and spatial dependence models 
 

While the closed-economy assumption is defensible for countries, it is too 
strong for regions within a country, where barriers to trade and factor flow are 
considerably weaker. To understand the implications for convergence of the 
introduction of the openness hypothesis, we can consider the role of factor 
mobility, trade relations and technological diffusion. In a nutshell, the speed of 

                                                                                                 

2 Other problems with cross-sectional regression analysis, raised by many researchers, but not 
discussed in the present paper, refer to i) Galton's fallacy; ii) endogeneity problems; iii) 
unobserved heterogeneity; and iv) temporal instability of the convergence process. In order to 
control for these problems, alternative approaches, such as panel data methods, time series 
methods, SUR methods, and the distribution dynamics approach are used (Durlauf and Quah, 
1999; Temple, 1999; Islam, 2003).  
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convergence to the steady-state predicted in the open-economy version of the 
neoclassical growth model as well as in the technological diffusion models is 
faster than in the closed-economy version of the neoclassical growth model.  
 

A direct way to empirically test the prediction of a higher speed of 
convergence once openness is allowed would consist in including interregional 
flows of labour, capital and technology in the growth regression model. It is 
quite clear, however, that such kind of direct approach is limited by data 
availability, especially with regards to capital and technology flows. Some 
attempts have been made to test the role of migration flows on convergence, but 
the results of these studies suggest that migration plays a small part in the 
explanation of convergence (Barro and Sala-i-Martin, 1995). 
 

An indirect way to control for the effects of interregional flows (or spatial 
interaction effects) on growth and convergence is through spatial dependence 
models3. A first way to take spatial dependence into account is the so-called 
spatial autoregressive model or SAR (Anselin and Bera, 1998), where a spatial 
lag of the dependent variable is included on the right hand side of the statistical 
model. If W is a row-standardized matrix of spatial weights describing the 
structure and intensity of spatial effects, equation (1) is re-specified as:  
 

(2) ερφ ++= WgXg   ( )IN 2,0~ εσε   
 

where ρ is the parameter associated to the spatially lagged dependent variable 
Wg that captures the spatial interaction effect indicating the degree to which the 
growth rate of per-capita GDP in one region is determined by the growth rates of 
its neighbouring regions, after conditioning on the effect of X. The error term is 
again assumed normally distributed and independently of X and of Wg, under the 
assumption that all spatial dependence effects are captured by the lagged term. 
 

An alternative way to incorporate the spatial effects is via the spatial error 
model or SEM (Anselin and Bera, 1998). This leaves unchanged the systematic 
component and models the error term in (1) as a Markovian random field, for 
instance by assuming that:  
 

(3) uW += ελε   
 

The error term u is assumed to be normally distributed, with mean zero 
and constant variance ( 2σ ), independently of X and randomly drawn.  

                                                                                                 

3 The inclusion of spatial dependence in β-convergence models can be justified by other arguments 
besides controlling for the effects of interregional flows. Generally speaking, spatial 
autocorrelation can act as a proxy to all the omitted variables (even different from factor migration, 
technology spill-over, trade and backward and forward linkages) that are correlated over space and 
catch their effects. 
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2.3. Multiple regimes in economic growth 
 

The bulk of cross-section growth studies has implicitly assumed that all 
economies (countries or regions) obey a common linear specification, disre-
garding the possibility of non-linearities in growth behaviour. Notable exception 
are Durlauf and Johnson (1995) and Liu and Stengos (1999).  
 

The concept of multiple regimes is often based on endogenous growth 
models characterized by the possibility of multiple, locally stable, steady-state 
equilibria as in Azariadis and Drazen (1990)4. The basic idea underlying these 
models is that the level of per-capita GDP to which each economy converges 
depends on some initial conditions and that, according to these characteristics, 
some economies converge to one level and others converge to another.  
 

A common specification that is used to test this hypothesis considers a 
modification of the systematic component in model (1) that takes the form:  
 

(4) 11 εφ += Xg  if  xX <    
22 εφ += Xg  if  xX ≥  

 
where x is a threshold that determines whether a region belongs to the first or 
second regime. The same adjustment can be applied to the systematic component 
in the (parametric) spatial auto-covariance models.  
 

The hypothesis of linearity has been abandoned in some cross region 
studies in Europe by assuming the presence of "threshold effects" automatically 
produced by the membership of each region to one group or another, according 
to "exogenous" criteria, such as geographical criteria (e.g. Centre versus 
Periphery) (Basile et al., 2003; Baumont et al., 2003)5. However, a problem with 
multiple regime analysis is that the threshold level cannot be (and must not be) 
exogenously imposed. Although Basile et al. (2003) and Baumont et al. (2003) 
use statistical methods to identify the Core and the Periphery, their definitions of 
regional groups remain 'exogenous' with respect to the growth behaviour. 
 

In order to identify economies whose growth behaviour obeys a common 
statistical model, we must allow the data to determine the location of the 
different regimes. Following Liu and Stengos (1999), we argue that a non-
parametric specification of the cross-region growth regression function goes a 
long away in addressing the issue of multiple regimes: 
 
(5) ( ) ε+= Xmg   
                                                                                                 

4 Multiple and locally steady states can also emerge in neoclassical growth models, as suggested 
by Galor (1996). 
5 In particular, Baumont et al. (2003) use exploratory spatial data analysis.  
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With this specification we solve the problem of non-linearities, but we still 
face that of spatial dependence. Thus, our task consists in combining non-
parametric estimators with the usual parametric estimators of the spatial 
parameters. In section 3 we present a semi-parametric extension of the SAR and 
SEM models which simultaneously accounts for spatial dependence and non-
linearities.  
 

3. SEMI-PARAMETRIC SPATIAL AUTO-COVARIANCE MODELS  
OF GROWTH BEHAVIOUR 

 
Semi-parametric spatial auto-covariance models extend the spatial auto-

regression model (SAR) and the spatial error model (SEM) to allow for flexible 
functional forms in the exogenous variables.  
 

For the semi-parametric spatial autocorrelation model (SP-SAR), an 
unknown functional form, m(X), replaces the linear form φX of the parametric 
spatial autocorrelation (SAR) model shown in (2): 
 

(6) ( ) ερ ++= WgXmg   ( )IN 2,0~ εσε
 

 
Just as with the parametric spatial model, there are no closed-form 

solutions for ρ in terms of the observations, and all estimates of these parameters 
must be obtained by numerical maximization of the log-likelihood function. 
Anselin (1988, p. 78) derives the (concentrated) log-likelihood function in (7): 
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which utilizes the residuals from the OLS regressions of g on ( )0eX =  and Lg  
on ( )LeX = , where Wgg L = . This time-saving simplification utilizes the 
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eigenvalues of the contiguity matrix, [ ]WsEigenvaluei =ω  (see Ord, 1975). In 
the parametric spatial model, the estimator ρ̂  is then substituted into the 
solution for φ  to yield φ̂ : 
 

(10) 
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where ( ) gXXXb '' 1−=  and ( ) LL gXXXb '' 1−= . 
 
 Estimators for m(X) and ρ within the semi-parametric model use a similar 
procedure, minimizing (9), except using the residuals 0e  and Le  from non-
parametric regressions of g  on X, and Lg  on X, respectively, and then running a 
final non-parametric regression of the 'de-spatialized' g  values on X: 
 

(11) ( ) ( ) εδερ +=+==− XzXmggg L
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δ . The unknown functional form m(X) is 

then estimated with the non-parametric estimator ( )Xzδ . 
 

The semi-parametric spatial errors model (SP-SEM) follows a similar 
approach. The log-likelihood function of the SEM is maximized, using the 
residuals from the parametric regression of g on X, as in equation (12):  
 

(12) ( ) ( ) ( ) ( )
2
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2
2ln
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where the covariance matrix of the errors Ω is a function of the error's spatial 
parameter λ: 
 

 [ ] ( )( )( ) ( ) ( ) 11'21'2' −−−
Ω==−−= λσλλσεε AAWIWIE NN  

 

where A is defined as WI N λ− . 
 

In the SP-SEM, however, residuals from the local-linear, non-parametric 
regression of g on X are used, weighted with a local estimator of the covariance 
matrix, which provides equation (13): 
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(13) ( ) ( )( ) ( )( )xZgxZgN δδ
σ
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where we will now use the non-parametric conditional-mean estimator: 
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or, in matrix notation: ( ) εδ += xZg . To get the Local-Linear GLS estimator 
for δ, we minimize: 
 

 ( )( ) ( )( ) εεδδ 1*'1*' −− Ω=−Ω− xZgxZg  
 
with respect to δ(ξ) which gives us: 
 

( ) ( ) gZZZxGLS
1*'11*'ˆ −−− ΩΩ=δ

 
 
where Ω∗−1 is the local covariance matrix is the global covariance matrix, 
weighted for closer values according to the kernel function: 
 

 ( ) ( )xKxK 11* −− Ω≡Ω  
 

and where K(x) is the diagonal matrix of local weights 





 −

h
xx

k i . 

 
 This is the local (linear) GLS (LLGLS) estimator as in Henderson and 
Ullah (2004). For more details, see also Gress (2004). Estimation of λ is 
performed numerically from a concentrated form of (13) which is used, in turn, 
to create Ω̂  and thus ( )xGLSδ̂ . 
 

4. EMPIRICAL RESULTS 
 
4.1. Data and variables 
  
 Our empirical analysis is based on the dataset compiled by Cambridge 
Econometrics on total value added (computed at 1995 prices and converted in 
the PPP of the same year), population, employment and physical capital 
investments and on data collected by Eurostat-Regio on unemployment rates and 
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on levels of education for the European NUTS-2 regions. The data set consists of 
161 regions6.  
  
 The dependent variable is the growth rate of the per-capita value added of 
the region (g), while the predictors introduced are: 1) ln(Y/L), initial per-capita 
gross value added (GVA); 2) ln(sk), average proportion of real physical 
investments to real value added; 3) ln(sh), average percentage of working age 
population that is in secondary school (data available only for the period 1993-
1997); 4) n, average growth rate of the population; 5) u, average unemployment 
rate; and 6) ln(agr), percentage of workers employed in agriculture. All of the 
variables are scaled to the EU-15 average. The model is estimated for the period 
1988-2000, which covers the first two programming periods of EU Structural 
Funds.  
  
 Variables 1)-4) are those included in the Mankiw et al. (1992) speci-
fication of the growth regression, which is derived from a human capital-
augmented version of the neoclassical growth model. This model predicts that 
the average growth rate of per-capita income is a positive function of human and 
physical capital and a negative function of population change and of the initial 
level of per-capita value-added.  
  
 The inclusion of the unemployment rate, u, on the right hand side of the 
model is suggested by some recent endogenous growth models which relax the 
assumption of labour market clearing underlying the neoclassical growth model, 
while maintaining the prediction of conditional β-convergence7. In particular, 
some authors explore the possible effects of unemployment upon human capital 
accumulation, and thus on economic growth (see, e.g., Aghion and Howitt, 1994; 
Podrecca, 1998; Mauro and Carmeci, 2003). Higher employment (lower unem-
ployment) implies higher human capital accumulation if this comes mainly 
through learning-by-doing on the job (Mauro and Carmeci, 2003). In the 
aggregate, unemployment can influence negatively the accumulation of human 
capital in the economy by preventing the work experience from being acquired. 
In steady-state the growth rate is a positive function of the efficiency of the 
scholastic system and of the employment rate. Hence, economies with higher 
equilibrium unemployment rates exhibit lower long-run growth rates. 
 

 Finally, we include the share of agricultural employment in total employ-
ment, ln(agr), as explanatory variable in the regression equation, in order to 
                                                                                                 

6 For various reasons, we have excluded some NUTS-2 regions from the dataset. Specifically, for 
the region of Bruxelles our dataset indicates extremely low levels of agricultural employment. 
Other regions, namely Berlin, Luxemburg, Ireland, Sterea Ellada and Flevoland resulted to be 
strong outliers in growth behaviour.  
7 The assumption of labour market clearing underlying the neoclassical growth model appears too 
strong if we think about the huge labour market imperfections and the huge regional unemploy-
ment disparities in Europe. 
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control for the effect of the regional economic structure. Indeed, the income 
dynamics may be influenced by the structural changes generating labour force 
shifts from low-productivity sectors (agriculture) to high-productivity sectors 
(industry and services) (Paci and Pigliaru, 1999). 
 
4.2. A trade-off between the smoothness of the estimated function and the 
estimation of the spatial parameter  
  
 Of central importance to the estimation of semi-parametric models is the 
choice of the smoothing parameter or window width. Usually the window-width 
is chosen among three ways: as a function of the variance of the data, 
minimizing the asymptotic integrated mean-squared error of the data, or 
minimizing the out-of-sample mean-squared error via cross-validation methods. 
Cross-validation techniques are considered most robust and in the spirit of non-
parametrics as they make no assumptions on underlying distributions. However 
it is most difficult to apply in a spatial context. In addition to being computa-
tionally expensive due to the high dimensions of models we are running, with 
the addition of spatial data, out-of-sample estimation of mean squared errors (for 
example) has potential theoretical issues as the structure of the spatial contiguity 
matrix must change whenever any observation is dropped. Furthermore, for the 
SP-SAR model, there are three separate cross-validations that must be 
performed, the first for g on X to determine e0, the second for gL on X, 
determining eL, and a third cross-validation for the de-spatialized regression of 
g** on X, as in equation (11), estimating the fits and slopes of the final model. 
Likewise, the SP-SEM model also has three regressions of which each would 
require a separate cross-validation. However, as the method we use to estimate 
the spatial parameter in our SP-SEM does not maximize the likelihood function 
directly, there are no such regressions to be run for it. 
  

Table 1: Alternative Optimal Window-Widths 
 

Cross-Validated (SP-SAR) Variable Silverman Rule-of-
Thumb Sheather-Jones h*1 h*2 h*3 

ln(Y/L) 0.178 0.072 0.32 0.29 0.16 
ln(sk) 0.151 0.018 0.09 0.17 0.10 
N 0.421 0.155 0.92 0.97 1.00 
ln(sh) 0.108 0.052 0.11 0.07 0.10 
ln(agr) 0.694 0.323 0.94 1.62 0.50 
U 0.323 0.114 0.67 0.83 0.50 

 
 Table (1) shows the optimal window-widths as calculated by these three 
alternate methods. The Silverman 'Rule-of-Thumb' is based on Silverman (1986) 
which assumes that the underlying conditional distribution is Normal. The 
Sheather-Jones (1991) method minimizes AMISE ('asymptotic mean integrated 
square error') with non-parametric estimates of the (conditional) density, also 
assuming a Normal underlying distribution. It is evident that the values 
determined by the Sheather-Jones method are of the order of half the magnitude 



 Région et Développement 103 

of those determined by the Silverman Rule-of-Thumb. The cross-validated 
values are generally larger than the Silverman values, implying greater linearity, 
except for the variable ln(sk) where it is smaller. 
 
 In fact, for both the SP-SEM and the SP-SAR models, the results from the 
unit scaling of the Silverman window-widths are over-fit, and we feel that a 
scaling of the Silverman window-widths by a factor between 2 or 3 gives the 
most reasonable results in both cases. We base this conclusion on a number of 
considerations. Firstly, the unit scaling yields an R2 of 0.904 for the SP-SEM and 
0.915 for the SP-SAR model. Fits of this magnitude should be suspected of 
being over-fit. Secondly, the residuals from both regressions become much more 
normally distributed, with lower levels of skewness and lower Jarque-Bera 
statistics, when the scaling of the window-widths is between 2 and 3. Finally, the 
estimates of the spatial autocorrelation parameters become more stable around 
these values, while the estimates of the conditional means and slopes still retain 
a good degree of flexibility, suggesting that the regressions are not yet entirely 
linear and still able to capture some of the underlying non-linear functional 
forms.  
  
 This last point relates to the trade-off between the smoothness of the 
estimated function and the estimation of the spatial parameter. As the estimated 
function is forced to be smoother (with a larger window-width) the estimated 
spatial parameter becomes larger as it 'absorbs' the non-linearity of the true 
function (see Tables 2 and 3). As the unit scaling of the Silverman window-
widths was already felt to be seriously over-fit, it can immediately be concluded 
that the Sheather-Jones optimal window-widths, at less than half the size of the 
Silverman values, are far too small to be seriously considered. 
 

Table 2: SP-SAR – smoothness vs. spatial dependence 
(p-values in parenthesis) 

 
 H* = c × hSilverman = c × {0.178, 0.151, 0.421, 0.694, 0.323, 0.108} 
 C 
 0.5 1.0 1.5 2.0 2.5 3.0 

ρ̂  
0.293 

(0.000) 
0.373 

(0.000) 
0.301 

(0.000) 
0.264 

(0.000) 
0.2615 
(0.000) 

0.278 
(0.000) 

2σ  
0.002 

(0.000) 
0.054 

(0.000) 
0.112 

(0.000) 
0.152 

(0.000) 
0.183 

(0.000) 
0.207 

(0.000) 
2R  0.996 0.900 0.794 0.723 0.666 0.622 
2
AdjustedR

 0.996 0.897 0.788 0.714 0.655 0.610 

Log-Likelihood 82.670 -172.724 -230.056 -253.562 -268.609 -278.669 
Normality 
(Jarque-Bera) 5465.0 183.679 45.309 12.776 3.410 0.958 
Moran 
I-Statistic 4.513 1.400 0.780 0.851 0.891 0.892 
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Table 3: SP-SEM: smoothness vs. spatial dependence 
(p-values in parenthesis) 

 
 H* = c × hSilverman = c × {0.178, 0.151, 0.421, 0.694, 0.323, 0.108} 

 C 

 0.5 1.0 1.5 2.0 2.5 3.0 

λ̂  
0.005 

(0.382) 
0.134 

(0.178) 
0.210 

(0.034) 
0.2490 
(0.010) 

0.282 
(0.003) 

0.3170 
(0.001) 

2σ  
0.002 

(0.000) 
0.060 

(0.000) 
0.119 

(0.000) 
0.147 

(0.000) 
0.183 

(0.000) 
0.204 

(0.000) 
2R  0.996 0.889 0.778 0.721 0.647 0.596 
2
AdjustedR

 
0.996 0.884 0.770 0.711 0.633 0.600 

Log-Likelihood 262.7 0.551 -53.545 -74.953 -88.671 -98.058 
Normality 
(Jarque-Bera) 5560.8 161.7 26.852 9.702 1.386 0.055 

Moran 
I-Statistic 5.320 4.232 4.157 4.336 4.798 5.248 

 
 Both of the semi-parametric models exhibit smaller estimates of the spatial 
correlation parameters than their parametric counterparts. While the SEM model 
estimates the spatial error autocorrelation to be 0.38, the SP-SEM model yields 
an estimated autocorrelation of only 0.27 (at the chosen window-width scaling of 
2.5). Likewise, the spatial autoregressive model estimates the spatial autoregres-
sive parameter to be 0.38, whereas the SP-SAR model returns an estimate of 
0.26 at the chosen scaling. Again, we hypothesize that this is due to a 'spill-over' 
between the non-linearity of the underlying functions and the estimation of the 
spatial parameters. By forcing the data to conform to the parametric form, the 
residual non-linearities are assumed into the spatial parameter. Thus we feel that 
the estimates of the spatial parameters in the semi-parametric models are more 
reliable than their parametric counterparts. 
 
4.3. Estimation of the conditional means: loess fits 
 
 Because the SP-SEM and SP-SAR models are estimating a flexible hyper-
surface in 7 dimensions for the conditional means of the regression, it is only 
possible to visualize a projection of this surface in 2- or 3- dimensions. Doing 
such a projection, however, collapses the remaining dimensions, forcing 
whatever curvature there may be to appear as random fluctuations. So, while the 
surface estimated is in fact smooth in 7 dimensions, it appears noisy and random 
when only a few dimensions of it are shown at a time. To facilitate an easier 
visual analysis of our results, therefore, we estimated additive semi-parametric 
models, which provide 2-dimension plots for each explicative variable.  
 
 For some variables, namely ln(agr), ln(sk) and n, the relationship between 
them and growth rates appeared graphically to be approximately linear and a F-



 Région et Développement 105 

test suggested that the null hypothesis of linearity could not be rejected. Thus, 
we took the shares of agriculture employment, the average proportion of real 
physical investments to real value added, and the growth rate of population 
entering the model linearly, whereas we allowed the education level, ln(sh), the 
unemployment rate, u, and the initial level of per capita GVA, ln(Y/L), to make 
up the nonlinear components of the models, except in the case of the SP-SEM 
where ln(Y/L) entered the model linearly. 
 
 We used the local regression techniques to estimate the nonlinear 
functions. Specifically, we used the loess locally weighted regression smoother 
(Cleveland and Devlin, 1988), which is a particular specification of the local 
polynomial regression model. The loess uses a nearest-neighbour bandwidth 
selection which allows the value of h to change as a function of X. A parameter, 
called span, allows identifying the k nearest neighbours of X, i.e. the k elements 
Xi closest to X. Thus, the span defines the size of the neighbourhood in terms of 
a proportion of the sample size: i.e. nspank ×≈ . As with fixed bandwidth 
selection, as the span parameter gets large, the local fit approaches a global 
parametric fit. Another advantage of loess estimator is that it incorporates 
robustness in the fitting procedure, to down-weight outlying observations. This 
is implemented by the use of bisquare weights in an iterative smoothing 
procedure8.  
 
 When the variable enter the model non-parametrically, the loess regression 
is always specified as a 1-degree polynomial with the span ranging from 0.4 to 
0.75 (each local neighbourhood contains 40-75% of the observations), except for 
m(ln(sk)) for which a span equal to 1 has been chosen. The choice of the 
polynomial degree and of the span is always based on the distribution of the 
error term. The two parameters are chosen at the level indicated by an 
orthogonal deviance of residuals with respect to the fitted values (Hastie and 
Tibshirani, 1990). 
 
 These estimates are presented graphically in Figures 1-7 in the Annex, 
both for the SP-SEM and the SP-SAR models9, alongside 95% point-wise 
confidence bands, ( ) ( )[ ]XmXm ˆˆ2ˆ σ± . The vertical axis reports the scale of per-
capita growth rates; the horizontal axis reports the scale of each independent 
variable.  
 

                                                                                                 

8 Local linear regression estimates previously discussed were based on a fixed bandwidth 
selection: the value of h is constant for each point x in the design space. A constant bandwidth was 
employed in order to easily show the important trade-off between smoothness and spatial 
dependence. 
9 The estimated spatial dependence parameter for the SP-SAR and SP-SEM are respectively equal 
to 0.26 and 0.28. 
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 It is immediately apparent that both semi-parametric models yield 
strikingly similar estimations of the conditional means, with some exceptions. 
Moreover, it seems clear that the flexible functional form reveals a good deal 
more information about the structure of the economic relationship than do their 
parametric brothers.  
 
 The SP-SAR graphical output in Figure 1 allows us to identify non-
linearities between the initial levels of per-capita GVA, ln(Y/L), and subsequent 
regional growth rates. Figure 1 suggests that European regions do not converge 
to a common 'conditional' steady state. According to this figure, we could say 
that there are at least three growth regimes or convergence clubs. There is 
convergence first amongst 'poor' regions, i.e. those with a level of per-capita 
GVA lower than 75% of the European average (i.e. lower than -0.3 in log terms); 
second amongst regions with a level of per-capita GVA between 90% and 110% 
of the European average (i.e. between -0.1 and 0.1 in log terms); and finally 
amongst 'rich' regions with a level of per-capita GVA higher than 135% of the 
European average (i.e. higher than 0.3 in log terms).  
 
 However, when the SP-SEM is applied, the fit for ln(Y/L) becomes linear, 
thus revealing that European regions do follow a global convergence path, i.e. all 
regions converge to the same steady state. As is well known, the spatial error 
model can be interpreted in terms of random shocks diffusion. In the presence of 
significant spatial error dependence, the random shocks to a specific region are 
propagated throughout the Union. The introduction of a positive shock to the 
error for a specific region has obviously the largest relative impact (in terms of 
growth rate) on this region. However, there is also a spatial propagation of this 
shock to the other regions. The magnitude of the shock spill-over dampens as the 
focus moves away from the immediate neighbouring regions (Le Gallo et al., 
2003). Evidently, this diffusion process also helps to relax, rather than to 
exacerbate, the multiple-regime structure of the convergence process in Europe. 
 
 The relation between per-capita GVA growth rates and unemployment 
rates (u) is negative: higher labour quality (lower unemployment) induces higher 
growth rates, while lower labour quality (higher unemployment) induces lower 
growth rates (Figure 2). The decreasing path, however, is far from being globally 
linear. As the unemployment rate increases, the per-capita GVA growth rate 
initially drops steeply, before nearly levelling out at higher levels of 
unemployment. Thus, above a certain threshold, European regions show similar 
lower per-capita growth rates. We can say that, over a certain rate of 
unemployment, regions appear to be 'locked' in an 'underdevelopment trap', 
regardless of whether they have 10%, 20% or 30% unemployment rates 
(respectively, 1.0, 2.0 and 3.0 in the figure).  
 
 The effect of the secondary school enrolment ratio (ln(sh)) on per-capita 
GVA growth rates is far from being 'monotonic'. Figure 3 clearly shows that 
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there is a positive relationship between the two variables until the level of 
education exceeds a certain threshold. But, once this threshold is exceeded, there 
is a negative effect of education on growth. 
 
 The per-capita GVA growth rate declines 'linearly' with the share of 
agriculture employment (ln(agr)) in both semi-parametric models (Figure 4). 
Thus, the existence of a structural effect on GVA growth rates seems 
substantially confirmed by the estimates.  
 
 The relationship between per-capita GVA growth rates and physical 
capital investments (ln(sk)) is also linear and positive, both in SP-SAR and in 
SP-SEM model fitting, as one may expect from theory (Figure 5). Finally, Figure 
6 graphically shows the lack of any relation between per-capita GVA growth and 
population growth rates (n).  
 
 Figures 2 and 3 have clearly shown that the secondary school enrolment 
ratio and the unemployment rate have both a significant and opposite effects on 
growth. As discussed above, these two variables capture different forms of 
accumulation of human capital. Indeed, human capital may be accumulated 
through both schooling investments and work experience. Thus, higher 
unemployment rates imply lower human capital accumulation when this comes 
through learning-by-doing on the job (Mauro and Carmeci, 2003). Now, we 
propose an alternative specification of the semi-parametric regression model 
with a local linear fit over the combination of ln(sh) and u. This specification 
allows us to assess whether each variable matters, or whether only one of them is 
important. The graphical output is reported in a 3-dimensional perspective plot 
with the two initial conditions on the two horizontal axes and the smoothed 
impact on growth plotted on the vertical axis (Figure 7). We can clearly see that 
our model predicts higher growth rates for regions with a rate of unemployment 
lower than the EU average, whatever the level of schooling investment. In 
particular, when relatively low levels of formal education are accompanied by 
relatively low level of unemployment, the estimated growth rate is above the EU 
average.  
 

5. CONCLUSIONS 
 
 In this paper we have addressed the issue of the most appropriate 
regression model to describe and interpret the experience of regional growth and 
convergence in the EU over the 1988-2000 period, which embraces the two first 
programming periods of European Structural Funds. In particular, we have 
claimed that the traditional linear approach to the analysis of conditional 
convergence cannot automatically be applied at the regional scale in Europe, 
since it does not take into account the presence of spatial dependence and of 
non-linearity (or multiple regimes) in the growth behaviour. Thus, we have 
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proposed a semi-parametric spatial auto-covariance growth model which 
simultaneously takes account of the problems of non-linearities and spatial 
dependence.  
 
 First, the econometric results suggest that there is a trade-off between the 
identification of non-linearities (i.e. the choice of the window-width) and the 
estimation of the spatial parameters. With a larger window-width the estimated 
spatial parameter becomes larger as it 'absorbs' the non-linearity of the true 
function. This also implies that the semi-parametric models always exhibit 
smaller estimates of the spatial correlation parameters than their parametric 
counterparts: by forcing the data to conform to the parametric form, the residual 
non-linearities are assumed into the spatial parameter. Thus we feel that the 
estimates of the spatial parameters in the semi-parametric models are more 
reliable than their parametric counterparts. 
 
 Secondly, the results of these semi-parametric spatial auto-covariance 
models confirm that assuming a common regime (or linear) approach is 
misleading: non-linearities are important in regional growth in Europe even 
when the spatial dependence is controlled for. In particular, our data reveal the 
existence of a non-linear negative relationship between growth and initial 
conditions in the case of the semi-parametric spatial autocorrelation model (SP-
SAR). This means that European regions do not converge to a common 
'conditional' steady state: there are in different growth regimes or convergence 
clubs. When the growth model is estimated through the semi-parametric spatial 
error model (SP-SEM) the relation between initial per-capita value added levels 
and the subsequent growth rates become linear.  
 
 There are also important non-linear effects of the two variables that 
capture the process of human capital accumulation (the secondary school 
enrolment ratio and the unemployment rate) on growth rates. In particular, lower 
unemployment rates (higher human capital accumulation when this comes 
through learning-by-doing on the job) induce higher growth rates, while higher 
unemployment rates (lower human capital accumulation) induce lower growth 
rates. However, above a certain threshold in the unemployment rate, European 
regions appear to be 'locked' within an 'underdevelopment path', showing similar 
lower per-capita value-added growth rates, whatever the level of schooling 
investment. This evidence suggests that only a combined policy aimed both at 
increasing the education level and at reducing the unemployment rate in 
backward regions can foster human capital formation in Europe and eventually 
boost these regions out of an underdevelopment trap. 
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ANNEX  
 

Figure 1: Semi-parametric Spatial auto-covariance models. 
Loess fits. GDP growth versus ln(Y/L) 

 
Fit SP-SAR; ρ=0.26; span=0.4; polynomial degree=1 

 

 
 

Fit SP-SEM; λ=0.28. Linear specification 
 

 
Notes: these figures plots the estimated partial-regression functions for the 
additive SP-SAR and SP-SEM regressions of per-capita income growth on 
the initial level of per-capita income. The points in the graphs represent 
"partial residuals" for each predictor. The broken lines give pointwise 
95% confidence bands. 
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Figure 2: Semi-parametric Spatial auto-covariance models. 
Loess fits. GDP growth versus u 

 
Fit SP-SAR; ρ=0.26; span=0.5; polynomial degree=1 

 

 
 

Fit SP-SEM; λ=0.28; span=0.5; polynomial degree=1 
 

 
Notes: these figures plots the estimated partial-regression functions for the 
additive SP-SAR and SP-SEM regressions of per-capita income growth on 
the unemployment rate. The points in the graphs represent "partial 
residuals" for each predictor. The broken lines give pointwise 95% 
confidence bands. 
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Figure 3: Semi-parametric Spatial auto-covariance models. 
Loess fits. GDP growth versus ln(sh) 

 
Fit SP-SAR; ρ=0.26; span=0.5; polynomial degree=1 

 

 
 

Fit SP-SEM; λ=0.28; span=0.5; polynomial degree=1 
 

 
Notes: these figures plots the estimated partial-regression functions for the 
additive SP-SAR and SP-SEM regressions of per-capita income growth on 
levels of education. The points in the graphs represent "partial residuals" 
for each predictor. The broken lines give pointwise 95% confidence bands. 

 



112 Roberto Basile and Bernard Gress 

Figure 4: Semi-parametric Spatial auto-covariance models. 
Loess fits. GDP growth versus ln(agr) 

 
Fit SP-SAR; ρ=0.26. Linear specification 

 

 
 

Fit SP-SEM; λ=0.28. Linear specification 
 

 
Notes: these figures plots the estimated partial-regression functions for the 
additive SP-SAR and SP-SEM regressions of per-capita income growth on 
the share of agriculture employment. The points in the graphs represent 
"partial residuals" for each predictor. The broken lines give pointwise 
95% confidence bands. 
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Figure 5: Semi-parametric Spatial auto-covariance models. 
Loess fits. GDP growth versus ln(sk) 

 
Fit SP-SAR; ρ=0.26. Linear specification 

 

 
 

Fit SP-SEM; λ=0.28. Linear specification 
 

 
Notes: these figures plots the estimated partial-regression functions for the 
additive SP-SAR and SP-SEM regressions of per-capita income growth on 
physical capital investments. The points in the graphs represent "partial 
residuals" for each predictor. The broken lines give pointwise 95% 
confidence bands. 
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Figure 6: Semi-parametric Spatial auto-covariance models. 
Loess fits. GDP growth versus n 

 
Fit SP-SAR; ρ=0.26. Linear specification 

 

 
 

Fit SP-SEM; λ=0.28. Linear specification 
 

 
Notes: these figures plots the estimated partial-regression functions for the 
additive SP-SAR and SP-SEM regressions of per-capita income growth on 
population growth rates. The points in the graphs represent "partial 
residuals" for each predictor. The broken lines give pointwise 95% 
confidence bands. 
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Figure 7: Semi-parametric Spatial auto-covariance models. 
Loess fits. GDP growth versus the interaction between ln(sh) and u 

 
Fit SP-SAR; ρ=0.26; span=0.75; polynomial degree=1 

 

 
 

Fit SP-SEM; λ=0.28; span=0.75; polynomial degree=1 
 

 
Notes: these figures plots the estimated partial-regression functions for the 
additive SP-SAR and SP-SEM regressions of per-capita income growth on 
the interaction between levels of education and unemployment rates.  
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MODÉLISATION SEMI-PARAMÉTRIQUE DE L'AUTOVARIANCE 
SPATIALE APPLIQUÉE A LA CROISSANCE RÉGIONALE  

EN EUROPE 
 

Résumé - Nous proposons une spécification spatiale et semi-paramétrique de 
l'autocovariance dans un modèle de croissance afin d'examiner la dynamique 
des régions européennes durant la période 1988-2000. Cette spécification prend 
en compte simultanément les problèmes de non-linéarité et de dépendance 
spatiale. Nous obtenons deux résultats principaux. Premièrement, un arbitrage 
entre l'identification de la non-linéarité et l'estimation des paramètres spatiaux 
est nécessaire. Deuxièmement, même si la dépendance spatiale est contrôlée, il 
existe une forte non-linéarité entre la croissance régionale et ses prédicteurs. En 
particulier, la relation entre la croissance et le chômage est négative mais 
globalement non-linéaire : les régions associées à un taux de chômage supérieur 
à une certaine valeur critique apparaissent bloquées dans une trappe de sous-
développement avec des taux de croissance similaires et faibles.  
 
 

MODELIZACIÓN SEMI PARAMÉTRICA DE LA AUTOVARIANTE 
ESPACIAL APLICADA AL CRECIMIENTO REGIONAL  

EN EUROPA 
 

Resumen - Proponemos una especificación espacial y semi-paramétrica de la 
autocovariante en un modelo de crecimiento para examinar la dinámica de las 
regiones europeas durante el périodo 1988-2000. Esta especificación toma en 
cuenta a la vez los problemas de que no es lineal y los de dependencia espacial. 
Obtenemos dos resultados. El primero es que es necesario un arbitraje entre la 
identificación de lo que no es lineal y la estimación de los parametros 
espaciales. El segundo es que, aunque sea controlada la dependencia espacial, 
existe, la relacion entre el crecimiento regional y sus predicadores no es nada 
lineal. En particular, la relación entre el crecimiento y el paro es negativa pero 
globalmente no es lineal. Las regiones que tienen una tasa de paro superior a un 
cierto valor crítico aparecen como bloqueadas en una situacion de 
subdesarrollo con tasas de crecimiento parecidas y bajas.  
 
 
 


