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Abstract - One of the stylised facts in Urban Economics is Zipf’s law, according 
to which city size distribution in many countries can be approximated by a Pa-
reto distribution, whose exponent is equal to one. In this paper we point out the 
three main issues in any empirical work on city size distribution and Zipf’s law: 
city definition, sample size, and the choice of the estimator. We review the more 
recent developments, especially those related to the relationship between the 
geographical unit chosen and sample size, and the features of the different 
methods to estimate the Pareto exponent. We illustrate the arguments, provid-
ing empirical examples using actual data from the city size distribution in the 
United States.  
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INTRODUCTION 

Since the seminal work by Auerbach in 1913 researchers from many 
fields (economics, statistics, physics and geography) have been fascinated with 
the striking empirical regularity that establishes a linear and stable relationship 
between city size and rank. Later this empirical regularity became known as 
Zipf’s law (Zipf, 1949), although what Zipf’s law establishes is just a particular 
case of that linear relationship where the second-largest city in a country is ex-
actly half the size of the largest one, the third-largest city is a third the size of 
the largest, etc. Over the last 100 years there have been a lot of studies testing 
the validity of this law (see the surveys by Cheshire, 1999, and Nitsch, 2005) 
for many different countries; to mention only a few, there are studies for France 
(Guérin-Pace, 1995), Greece (Petrakos et al., 2000), China (Song and Zhang, 
2002), Malaysia (Soo, 2007) and the United States (Ioannides and Overman, 
2003; Black and Henderson, 2003). 

There has been a revival of interest in city size distributions and Zipf’s 
law in the last years from urban economists, especially after the New Economic 
Geography by Krugman. Starting from the wide empirical literature, some theo-
retical models have been proposed recently to explain the law, with different 
economic foundations: productivity or technology shocks (Duranton, 2007; 
Rossi-Hansberg and Wright, 2007) or local random amenity shocks (Gabaix, 
1999). These models justify Zipf’s law analytically, associate it directly with an 
equilibrium situation, and connect it to proportionate city growth (Gibrat's law), 
another well-known empirical regularity which postulates that the growth rates 
of cities tend to be independent of their initial sizes. In both the theoretical and 
empirical literature, Zipf’s law is seen as a reflection of a steady-state situation. 

To obtain Zipf’s law we must assume a particular statistical function for 
describing city size distribution, the Pareto distribution. Let  be the city size 
(population); if it is distributed following a Pareto distribution, also known as 

power law, the density function is 
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Making aSNA ⋅=  we obtain the simple expression aSAR −⋅= . Taking natu-
ral logarithms, we obtain the linear specification that is usually estimated: 
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where  represents a standard random error ( ( ) 0=uE  and ) and ln 
A is a constant SaNA lnlnln += . Zipf’s law is an empirical regularity, which 
appears when the Pareto exponent of the distribution is equal to unity ( 1ˆ =a ) 
and means that, ordered from largest to smallest, the size of the second city is 
half that of the first, the size of the third is a third of the first, and so on (the law 
is also known as the rank–size rule, although they are not exactly the same; see 
Gabaix and Ioannides, 2004).  

Moreover, the greater the coefficient, the more homogeneous the city siz-
es. A growing evolution over time means a process of convergence in city sizes. 
Also, the smaller the coefficient the less homogeneous the city sizes, and a de-
creasing evolution would mean a process of divergence. Therefore it is interest-
ing to study not only the value of the exponent, but also its evolution over time, 
although changing boundaries make it difficult to carry out a long-term analysis 
with consistent boundaries. Pareto exponents are not the perfect instrument to 
analyse the degree of inequality within the distribution because they impose a 
specific size distribution (Pareto) although there is a statistical relationship be-
tween Zipf’s law and the main concentration indices: Gini, Bonferroni, Amato 
and the Hirschman–Herfindahl index (Naldi, 2003).  

Figure 1. Rank-Size Plot (ln scale) US MSAs in 2010 

 
Note: The slope of the line fitted by OLS is 0.911 (see Table 4). . 

Eq. (1) can be represented as a graph, called Zipf plot in the specialised 
literature. Figure 1 shows the Zipf plot for the year 2000 using US Metropolitan 
Statistical Areas. Data are fitted by a power law, and its exponent is estimated 
by using the OLS estimator (more on this in the following). Eq. (1) provides a 
very good fit to the real behaviour of the distribution with an estimated Pareto 
exponent of 0.911. Similar graphs can be found in Krugman (1996) and Gabaix 
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(1999); they use data from metropolitan areas from the Statistical Abstract of 
the United States and conclude that for 1991 Pareto’s exponent is exactly equal 
to 1.005, thus finding evidence supporting Zipf’s law for this year in the US. 

There are two excellent surveys that cover most of the issues related to 
Zipf’s law, Cheshire (1999) and Gabaix and Ioannides (2004). Newman (2006) 
also reviews some of the empirical evidence from a more interdisciplinary point 
of view. This paper is simpler and shorter than these previous surveys and its 
aim is very specific, to point out the three main issues that every researcher 
faces in any empirical work on Zipf’s law: the choice of the spatial units, the 
sample size, and the choice of the estimator.  

Next section provides the explanation and consequences for these three 
issues. Subsections 1.1 and 1.2 expand the discussion in González-Val (2010) 
and González-Val (2011) about data selection. To illustrate the arguments, em-
pirical examples using US data are provided in Section 2.  

1. THE THREE MAIN ISSUES 

There are three main issues in every study on city size distribution: city 
definition (Rosen and Resnick, 1980; Cheshire, 1999; Soo, 2005), sample size 
(Parr and Suzuki, 1973; Rosen and Resnick, 1980; Eeckhout, 2004) and the 
choice of the estimator (Gabaix and Ioannides, 2004; Nishiyama et al., 2008; 
Gabaix and Ibragimov, 2011).  

1.1.  City definition: What is a city? 

Any study on city size distribution and Zipf’s law faces the problem of 
what is meant by the term “city”, as there are various ways to define a city. This 
first decision, the choice of the spatial unit, is not trivial. As Rosen and Resnick 
(1980) point out, “whether a study uses urban place,s legal cities or urban ag-
glomerations may affect the value of the observed Pareto exponent and the 
closeness of the fit.” 

The two basic alternatives are the administratively defined cities (legal 
cities) and the metropolitan areas. Both units have advantages. As Glaeser and 
Shapiro (2003) indicate, metro areas represent urban agglomerations, covering 
huge areas that are meant to capture labour markets. Metropolitan areas are 
attractive because they are more natural economic units. Legal cities are politi-
cal units that usually lie within metropolitan areas and their boundaries make no 
economic sense. But some factors, such as human capital spillovers, are thought 
to operate at a very local level (Eeckhout, 2004).  

Which one is the best alternative? The answer depends basically on two 
aspects. First data availability; metro area definitions are not available in some 
countries (e.g. many European countries do not have official definitions for 
metropolitan areas), while data on legal cities are probably easier to get through 
official census and national statistical services. Moreover, if the objective is to 
carry out a dynamic analysis, both units can have problems of changing bounda-
ries over time. Secondly and probably more important, is what Eeckhout (2004) 
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calls “the research objective.” What do you want to study? The economic area 
of influence of labour markets and big infrastructure projects like airports ex-
ceeds the boundaries of single legal cities, while the geographical influence of 
factors, such as public services (schools public transportation etc.) and local 
externalities is more reduced. However, from a statistical point of view, there is 
a reason that recommends the use of cities (untruncated data), rather than metro 
areas; the next subsection deals with this issue.  

1.2.  Sample size: How many cities? 

Usually sample size depends on data availability. However, in many cas-
es research focuses only on upper-tail distribution. This approach is reasonable 
as the largest cities represent most of the population of a country and the behav-
iour of the upper-tail distribution can be different from that of the entire distri-
bution (Levy, 2009). In any case, some kind of rule is necessary to decide the 
number of cities in the sample.  

Cheshire (1999) summarises three possible criteria for sample size selec-
tion: a fixed number of cities, a size threshold (Rosen and Resnick, 1980) or a 
size above which the sample accounts for some given proportion of the coun-
try’s population (Wheaton and Shishado, 1981; Black and Henderson, 2003). 
Against this background, Eeckhout (2004) demonstrates the statistical im-
portance of considering the whole sample. In proposition 1 of his paper, he 
states that “if the underlying distribution is the lognormal distribution, then the 
estimate of the parameter  of the Pareto distribution is increasing in the trun-
cation city size ( ) and decreasing in the truncated sample population  
( ).” As we will see in Section 3, estimation results using subsamples 
support that proposition. This also implies that the Pareto exponent for spatial 
units constructed aggregating smaller units will be higher (and closer to Zipf’s 
law). 

Therefore, if any truncation point is imposed the estimates of the Pareto 
exponent may be biased. However when all cities are considered often nonline-
ar behaviours appear leaving the fulfilment of Zipf’s law only for the largest 
cities. New statistical distributions have been proposed instead of the Pareto 
distribution to explain the behaviour of the entire distribution: lognormal distri-
bution (Parr and Suzuki, 1973; Eeckhout, 2004), q-exponential distribution 
(Malacarne et al., 2001; Soo, 2007), the double Pareto lognormal distribution 
(Reed, 2002; Giesen et al., 2010), or even a new distribution function that 
switches between a lognormal and a power distribution (Ioannides and Skouras, 
2009). 

Moreover, the geographical unit chosen is also closely related to sample 
size. For example, if data come from metropolitan areas, you are imposing an 
implicit truncation point because in many countries, metro areas are defined 
according to some minimum population threshold (e.g. in the US, the central 
city needs to have 50 000 or more inhabitants and a total metropolitan popula-
tion of at least 100 000). So, once the decision about the geographical unit is 

â
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made, the sample size (and the truncation point) may be determined as a conse-
quence of the spatial definition of units. 

1.3.  Estimators of the Pareto exponent: How do I estimate ? 

Obviously, there are statistical tests to check whether the distribution is 
Pareto (Urzúa, 2000; Malevergne et al., 2011) without applying Eq. (1), but as 
Gabaix and Ioannides (2004) suggest, “estimate don’t test.” They argue that the 
main question should be how well a theory (Zipf’s law) fits rather than whether 
or not it fits perfectly. 

From Figure 1, it seems easy to estimate the Pareto exponent, because it 
is just the slope of the line fitted by OLS. This has been the method used in 
many works, until recent years (Nitsch, 2005, carried out a meta-analysis, with 
the results of a list of studies until the year 2002). However, it is not the only 
option; more methods have been proposed to try to solve some of the problems 
associated with OLS and accommodate the estimates of the exponent to nonlin-
ear behaviours.  

Table 1 summarises the main methods. The first one is the simple OLS 
estimator and the baseline equation is Eq. (1). The OLS estimate presents some 
problems (Nishiyama et al., 2008). The main one is that the Hill (Maximum 
Likelihood) estimator is more efficient, if the underlying stochastic process is 
really a Pareto distribution (Gabaix and Ioannides, 2004; Goldstein et al., 2004). 
Furthermore, as Gabaix and Ioannides (2004) point out, this “OLS regression 
underestimates the true standard error on the estimated coefficient”, thus “tak-
ing the OLS estimates of the standard errors at face value will lead one to reject 
Zipf’s law much too often.” Finally, this procedure is strongly biased in small 
samples (Gabaix and Ibragimov, 2011). To correct this last pitfall, Gabaix and 
Ibragimov (2011) propose specifying Eq. (1), by subtracting 1/2 from the rank, 
to obtain an unbiased estimation of the exponent. Their numerical results 
demonstrate the advantage of this approach over the standard OLS estimation 
procedures, especially in small samples. However, again if the underlying sto-
chastic process is really a Pareto distribution, the Hill estimator is more effi-
cient. 

The Hill estimator assumes the null hypothesis of the power law, so the 
procedure does not estimate Eq. (1); it is based on the maximisation of the log-
likelihood function. The problem in this case is that, when the size distribution 
of cities does not follow a Pareto distribution, the Hill estimator may be biased 
(Soo, 2005). In particular, Gabaix and Ibragimov’s preliminary results suggest 
that their specification is more robust than Hill’s estimator under deviations 
from power laws. 

The next two methods try to incorporate nonlinear behaviours basically 
augmenting Eq. (1) introducing new terms. Rosen and Resnick (1980) added 

 to the specification; a  coefficient significantly different from zero is 
interpreted as a deviation from the Pareto distribution and Zipf’s law. Fan and 

â
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Casetti (1994) introduced  in the equation; again, this term tries to cap-
ture departures from Zipf’s law and how deviations depend on the size of the 
city. These specifications have fallen into disuse, because the significance of 
these coefficients may be spurious. Gabaix and Ioannides (2004) perform Mon-
te Carlo simulations and find that, with the OLS regression in Rosen and Res-
nick’s equation, one will often find a statistically significant coefficient , even 
if Zipf’s law holds perfectly by construction.  

Table 1. Estimators of the Pareto Exponent 

Method Equation Estimator 

Simple OLS     uSaAR +−= lnlnln  OLS 

Gabaix and Ibragimov (2011) 
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




 − lnln

2
1ln  OLS 

Hill (Maximum likelihood) Log-likelihood function ( )∑
−

=

−

−
= 1

1
lnln

1ˆ
N

i
Ni SS

Na  

Rosen and Resnick (1980) 
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Fan and Casetti (1994)    uSScSaAR +⋅+−= lnlnlnln  OLS 

Ioannides and Overman (2003) 
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Finally, Ioannides and Overman (2003) developed a nonparametric meth-
od to estimate the Pareto exponent, based on the statistical explanation of Zipf’s 
law for cities, offered by Gabaix (1999). The nonparametric estimate of the 
exponent is calculated, using nonparametric estimates of the mean growth 
rates  and of the variance of growth rates . This allows us to test 
whether Gibrat’s law holds. The drawback of this procedure is that it requires a 
big sample size, because when there are few observations sparsity in the data, it 
can make the estimates of the Zipf exponent fluctuate considerably. 

2.  AN EMPIRICAL EXERCISE: US CITY SIZE DISTRIBUTION 

2.1.  Data  

The US city size distribution has been the focus of attention of many re-
searchers: Dobkins and Ioannides (2000, 2001), Overman and Ioannides (2001), 
Black and Henderson (2003), Ioannides and Overman (2003), Eeckhout (2004) 
and González-Val (2010), among others. In this wide literature, different spatial 
units, time periods, and statistical and econometrics methods are considered. 

The US Census Bureau offers information for many different geograph-
ical levels, so the choice is not only between legal cities and metro areas. There 
are studies using data from states (Soo, 2011), counties (Beeson et al., 2001; 
Michaels et al., 2012), minor civil divisions (Michaels et al., 2012), metropoli-
tan areas (Ehrlich and Gyourko, 2000; Dobkins and Ioannides, 2000, 2001; 

SSc ln⋅

b̂

( )Sa
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Black and Henderson, 2003; Ioannides and Overman, 2003), places (Eeckhout, 
2004, 2009; Levy, 2009; Giesen et al., 2010; González-Val, 2010), urbanized 
areas (Garmestani et al., 2005; Garmestani et al., 2008) or the economic areas 
recently defined by Rozenfeld et al. (2011), using the city clustering algorithm. 
Berry and Okulicz-Kozaryn (2011) argue that the best units are the economic 
areas, defined by the Bureau of Economic Analysis.  

For illustrative purposes, we will only focus on some of these units: 
states, counties, metropolitan areas, urbanized areas and places. Table 2 shows 
the descriptive statistics for the year 2000. The data source is the US Census 
Bureau (www.census.gov). To show the effect of sample size, we consider three 
different samples: all units, top 100 and top 250. Obviously, when the minimum 
population size at the truncation point ( ) increases, the smaller the sample size 
is, in any case.  

Table 2.  Descriptive Statistics by Unit 

Units Sample Size 
(N) 

% of Total 
US  

Population 
Mean Standard 

Deviation 
Minimum  

( S ) 
Maximum 

( S ) 

States All (50) 99.78% 5 615 899.48 6 186 487.80 493 782 33 871 648 

Counties All (3 114) 99.79% 90 183.01 293 622.20 67 9 519 338 

 Top 100 42.39% 1 193 056.72 1 111 938.54 556 678 9 519 338 

  Top 250 61.03% 687 006.92 817 484.23 226 778 9 519 338 

Metropolitan 
Statistical 

Areas 

All (362) 82.64% 642 486.02 1 485 743.37 52 457 18 323 002 

Top 100 64.65% 1 819 293.54 2 467 957.00 446 997 18 323 002 

Top 250 78.23% 880 572.32 1 736 721.06 145 666 18 323 002 

Urbanized 
Areas 

 

All (463) 66.40% 403 591.39 1 237 112.01 665 17 799 861 

Top 100 53.39% 1 502 442.81 2 360 044.21 292 637 17 799 861 

Top 250 62.15% 699 611.67 1 627 212.92 95 766 17 799 861 

Places All (25 358) 74.17% 8 231.54 68 390.23 1 8 008 278 

 Top 100 20.19% 568 308.67 906 644.82 194 973 8 008 278 

  Top 250 27.38% 308 237.96 610 371.80 99 216 8 008 278 

Note: Data in 2000. Total US population data are taken from the US Census 
reau. http://www.census.gov/population/censusdata/table-4.pdf.  

States are the primary legal subdivision of the United States; there are 50 
states and they are very big units with similar sizes to some European countries.  

Therefore, states do not seem to be the most appropriate approximation to 
urban agglomerations, although empirical studies on Zipf’s law exist even at the 
country level (Rose, 2006; González-Val and Sanso-Navarro, 2010). There are 
good reasons to study state size distribution. As Soo (2011) argues, states cover 
the entire population of the country, whereas cities do not and states are the 
administrative level at which many policies vary. Recent works relate the ful-

S
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fillment of Zipf’s law in city size distribution, at the regional and national level 
(Gabaix, 1999; Giesen and Südekum, 2011). 

Counties are the primary legal subdivision of most states. At first glance, 
counties do not seem to impose a truncation point, as there were 3, 114 counties 
in the year 2000 with populations between 67 and 9 519, 338. Moreover, coun-
ties cover the entire population and land area of the country as they are adminis-
trative subdivisions of states. Beeson et al. (2001) explain the additional ad-
vantages of counties, while Michaels et al. (2012) point out some of the disad-
vantages, including that counties often pool together urban centers with their 
surrounding countryside, clouding the distinction between urban and rural areas.  

Metropolitan Statistical Areas (MSAs) are geographic entities, defined by 
the federal Office of Management and Budget, based on the concept of a core 
area with a large population nucleus (central city), plus adjacent communities 
having a high degree of economic and social integration with that core. To qual-
ify as an MSA, the presence of a central city with 50, 000 or more inhabitants is 
required or the presence of an urbanized area and a total population of at least 
100, 000 (75, 000 in New England). That is why, there were only 362 MSAs in 
the year 2000 and the minimum population in the sample is 52 457, always 
higher than the minimum population threshold. MSAs are multi-county units; 
the county or counties containing the largest city and surrounding densely set-
tled territory are the central counties of the MSA. 

Table 3. Incorporated Places: Number of Cities  
and Descriptive Statistics by Year 

Year Cities Mean Standard Deviation Minimum Maximum 
1900 10 596 3 376.04 42 323.90 7 3 437 202 
1910 14 135 3 560.92 49 351.24 4 4 766 883 
1920 15 481 4 014.81 56 781.65 3 5 620 048 
1930 16 475 4 642.02 67 853.65 1 6 930 446 
1940 16 729 4 975.67 71 299.37 1 7 454 995 
1950 17 113 5 613.42 76 064.40 1 7 891 957 
1960 18 051 6 408.75 74 737.62 1 7 781 984 
1970 18 488 7 094.29 75 319.59 3 7 894 862 
1980 18 923 7 395.64 69 167.91 2 7 071 639 
1990 19 120 7 977.63 71 873.91 2 7 322 564 
2000 19 296 8 968.44 78 014.75 1 8 008 278 

Note: Excluding Alaska Hawaii and Puerto Rico.  
Source: Table 1 in González-Val (2010). 

An urbanized area consists of a central place(s) and adjacent territory, 
with a general population density of at least 1, 000 people per square mile of 
land area, that together have a minimum residential population of at least 50, 
000 people. An urbanized area comprises a central place and the urban fringe 
(Garmestani et al., 2005; Garmestani et al., 2008). As in the case of MSAs, ur-



156     Rafael Gonzàlez-Val 
 

 

banized areas are meant to capture economic areas, although they are smaller 
than MSAs.  

Finally, places are concentrations of populations, either legally bounded 
as an incorporated place or identified as a Census Designated Place. Incorpo-
rated places are the legal cities, incorporated under state Law as cities towns 
(except in the states of New England, New York and Wisconsin), boroughs 
(except in Alaska and New York) or villages, which have legally established 
limits powers and functions. These places have been used recently in the empir-
ical analyses of American city size distribution (Eeckhout, 2004, 2009; Levy, 
2009; Giesen et al., 2010; González-Val, 2010) and their main advantage is that 
they do not impose any truncation point (populations range from 1 to 8, 008, 
278 inhabitants). As an example of a long-term analysis of Zipf’s law, we will 
also consider a sample of all incorporated places, without any size restriction for 
each decade of the 20th century. From a long-term perspective, units such as 
MSAs or urbanized areas are excluded, as they were introduced in the middle of 
the 20th century. The data are the same as those used by González-Val (2010); 
Table 3 shows the number of cities and descriptive statistics by year. 

Figure 2. Estimated Density Functions (ln scale) by Unit 

 
Note: Data in 2000. The vertical black line represents the minimum population  
threshold of 50 000 inhabitants (10.82 in logarithmic scale). 

Figure 2 shows how the choice of the geographical definition of city is re-
lated to the sample size. The vertical black line represents the minimum thresh-
old of 50, 000 inhabitants and we can observe how MSAs and urbanized areas 
distributions are to the right of that cut-off point, while most of the places and 
counties distributions are to the left. This minimum population threshold repre-
sents the main inconvenience of MSAs and urbanized areas (besides changing 
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boundaries, which is a common problem in long-term analysis for all units, 
except states), because it implies that only the largest cities (upper-tail distribu-
tion) are represented in the samples, leading to biased results in the estimates of 
the Pareto exponent (Eeckhout, 2004), while other units, such as places or coun-
ties, cover the entire distribution, including even the smallest units. 

2.2.  Results 

Table 4 shows the estimates of the Pareto exponent for the different geo-
graphical units, using the simple OLS regression, Gabaix and Ibragimov’s 
(2011) Rank - estimator and the Hill (maximum likelihood) estimator. We 
consider three sample sizes: all units, top 100, and top 250. We can obtain sev-
eral conclusions from these results. 

Table 4. Estimated Pareto Exponents by Unit 
Units Sample Size (N) OLS Gabaix-Ibragimov (2011) Hill 
States All (50) 0.797 0.857 0.513 

  (0.159) (0.171) (0.073) 
Counties All (3 114) 0.660 0.662 0.166 

  (0.017) (0.017) (0.003) 
 Top 100 1.763 1.871 1.730 
  (0.249) (0.265) (0.173) 
 Top 250 1.444 1.487 1.206 
  (0.129) (0.133) (0.076) 

Metropolitan Statistical Areas All (362) 0.911 0.930 0.582 
 (0.068) (0.069) (0.031) 

 Top 100 1.117 1.177 1.022 
  (0.158) (0.166) (0.102) 
 Top 250 0.974 1.001 0.877 
  (0.087) (0.090) (0.055) 

Urbanized Areas All (463) 0.630 0.641 0.191 
  (0.041) (0.042) (0.009) 
 Top 100 0.984 1.036 0.914 
  (0.139) (0.147) (0.091) 
 Top 250 0.897 0.923 0.851 
  (0.080) (0.083) (0.054) 

Places All (25 358) 0.526 0.526 0.137 
  (0.005) (0.005) (0.001) 
 Top 100 1.340 1.424 1.410 
  (0.190) (0.201) (0.141) 
 Top 250 1.352 1.397 1.377 
  (0.121) (0.125) (0.087) 

Notes: Data in 2000. Pareto exponents are estimated using OLS Gabaix and Ibragimov’s (2011) 
Rank - 1/2 estimator and the Hill (maximum likelihood) estimator. Values in parenthesis are the 
standard errors; in the case of OLS and Gabaix and Ibragimov’s estimators, they are calculated 
applying Gabaix and Ioannides’s (2004) corrected standard errors: , where 
N is the sample size.  

21
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Figure 3. Evolution of the Estimated Pareto Exponents  
 (Incorporated Places) by Year  
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First, the results using simple OLS regressions (Eq. 1) and Gabaix and 
Ibragimov’s estimator are equal (or almost the same), when the sample size is 
large enough; see the results for all places (25, 358 observations), all counties    
(3 114) or all urbanized areas (463). The reason is that Gabaix and Ibragimov’s 
estimator performs better in small samples but when the sample size is large, 
there are not significant differences. Therefore, results are different when only 
the upper-tail distribution is considered; this is the case for states and top sam-
ples. The gap between both estimators in those cases is the bias from simple 
OLS regressions. 

Second, the values estimated using the Hill estimator are always much 
lower, probably indicating that the null hypothesis of the power law is not ful-
filled. Remember that the Hill estimator is more efficient only if the underlying 
stochastic process is really a Pareto distribution, but when this assumption does 
not hold, the Hill estimator may be biased (Soo, 2005). The latter seems to be 
the case, given the much lower values estimated in most cases. However, for the 
top samples the differences with the other estimators are smaller, pointing to 
clearer power law behaviour in the upper-tail distribution. 

Third, the estimated values of the Pareto exponent increase with the trun-
cation point (N) for all the geographical units using any of the estimators, sup-
porting Eeckhout’s (2004) claim that the estimated value of Pareto’s exponent 
depends negatively on the cut-off point. Therefore, when all units are consid-
ered (samples with no truncation point), the estimated coefficients are the low-
est ones. Fourth Zipf’s law only holds for Metropolitan Statistical Areas and top 
urbanized areas; in the rest of the cases, the estimates are significantly different 
from the value one. This indicates that city definition really matters in the ful-
filment of Zipf’s law (Rosen and Resnick, 1980). 

 Figure 3 displays an example of the evolution of the Pareto exponent 
over time, using the untruncated sample of incorporated places, summarised in 
Table 3. Again the three estimators are applied (simple OLS, regressions Ga-
baix and Ibragimov’s estimator, and the Hill estimator). The same explanations 
about the differences between estimators apply (e.g. when all incorporated plac-
es are considered with no truncation point, results from simple OLS regressions 
and Gabaix and Ibragimov’s estimator are the same, while Hill’s estimates are 
much lower). The evolution of the Pareto exponent is similar with the three 
estimators: decreasing over time for all incorporated places and increasing for 
top samples. This would indicate that for the entire sample (including all the 
incorporated places for each year), a divergent behaviour was produced, while 
for the biggest incorporated places, the trend has been convergence: they have 
become closer in size. González-Val (2010) obtains the same conclusion, using 
Gini coefficients. 

Figure 4 shows the estimates of the Pareto exponent, applying the inno-
vative Ioannides and Overman’s (2003) nonparametric methodology, consider-
ing a pool over the whole century, with all incorporated places in Table 3 (162, 
698 observations); some observations with extreme values are excluded, see 
González-Val (2012). To calculate the nonparametric estimates of the condi-
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tional mean variance of growth on city size and the derivates (see the expression 
in Table 1), we apply the LOcally WEighted Scatter plot Smoothing algorithm. 
Results are shown until city sizes with a normalised population of 0.016, be-
cause of one technical problem with this procedure: the sparsity of data at the 
upper tail of the distribution, which produces extreme values of the estimations 
(Ioannides and Overman, 2003). The dotted lines are bootstrapped: 95% confi-
dence bands calculated, using 500 random samples with replacement. 

Figure 4. Nonparametric estimate for all the 20th century  
(Incorporated Places a pool of 162, 698 observations  

LOcally WEighted Scatter plot Smoothing (LOWESS) algorithm)  

 
Note: This figure is obtained by applying the nonparametric procedure proposed by Ioannides 
and Overman (2003); this empirical strategy relies on the statistical foundation of Zipf’s law 
offered by Gabaix (1999). The normalised population of city i is the population of city i divided by 
the contemporary total urban population. More information about the nonparametric estimations 
of the local Zipf exponent using data for all cities can be found in González-Val (2012). This 
graph is equivalent to Figure 3a in González-Val (2012).  

The exponent decreases with city size until reaching the normalised size 
of 0.012, when it begins to grow to reach a value close to one. For most of the 
distribution of city sizes the value one falls within the confidence bands, indi-
cating that Zipf’s law holds for most of the city sizes (especially because most 
of the observations are concentrated in the lower tail of the distribution on the 
left side of the graph).  

3. CONCLUSIONS 

Zipf’s law is an appealing empirical regularity. One of its main attrac-
tions is that it is easy to check – the estimation of the Pareto distribution can be 
carried out simply by fitting a line to data on city size (population). Moreover, 
Zipf plots provide a graphical tool to observe the quality of the fit to the real 
behaviour of the distribution. However, even this simple empirical exercise 

0
.5

1
1.

5
P

ar
et

o 
E

xp
on

en
t

0 .002 .004 .006 .008 .01 .012 .014 .016
Normalised Population (S)

Pareto Exponent - Confidence Intervals



                                   Région et Développement 161 
 

 

implies several choices that can affect the results. In this paper, we review the 
three main issues in any empirical work on city size distribution and Zipf’s law: 
city definition, sample size and the choice of the estimator.  

The choice of city definition depends on data availability and the research 
objective. The geographical unit chosen is also closely related to sample size 
and the sample size has a clear effect on the estimate of the Pareto exponent 
(Eeckhout, 2004). If any truncation point is imposed, the estimates of the Pareto 
exponent may be biased, but if all cities are considered, often nonlinear behav-
iours appear.  

Finally, we carry out an empirical exercise with US city size distribution 
data to examine the features of several estimators of the Zipf exponent. To sum 
up, the Hill estimator is the best if the distribution actually follows a power law, 
but if you have doubts about the power law behaviour of your sample, the Ga-
baix and Ibragimov specification performs better than the others, especially for 
small samples. 
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LA LOI DE ZIPF : LES QUESTIONS FONDAMENTALES  
DES TRAVAUX EMPIRIQUES 

 

Résumé - La loi de Zipf figure parmi les régularités les plus singulières dans le 
domaine de l’économie urbaine. Selon cette loi, la distribution rang-taille des 
villes suit, dans un grand nombre de pays, une distribution de Pareto avec un 
coefficient de hiérarchisation égal à 1. Cet article examine trois questions im-
portantes dans les travaux empiriques relatifs à la loi de Zipf : la définition de 
la ville et de l’unité géographique retenue, la taille de l’échantillon et le choix 
de la méthode d’estimation associée. A titre d’illustration, une application est 
proposée à partir de données récentes sur des villes américaines.  
 
Mots-clés : LOI DE ZIPF ; DISTRIBUTION RANG-TAILLE DES VILLES 


