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Abstract - This paper propose a novel methodology to estimate the distribution 
dynamics of income in presence of spatial dependence by representing spatial 
dynamics as a random vector field in Moran space. Inference on the local 
spatial dynamics is discussed, including a test on the presence of local spatial 
dependence. The methodology also allows to compute a forecast of future 
income distribution which includes also the effects of spatial dependence. An 
application to US States is used to illustrate the effective capacities of the 
methodology. 
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1.  INTRODUCTION 

This paper proposes a new methodology to study the distribution dynamics 
of income in presence of spatial dependence. Our proposal is the result of two 
converging strands of literature denoted ETSDA (Exploratory Time-Space Data 
Analysis) and ESTDA (Exploratory Space-Time Data Analysis) by Rey (2014). 

From one hand, literature on ETSDA extends the methods used in the 
temporal studies on income dynamics in order to incorporate spatial dimension. 
Quah (1993) can be considered the pioneering contribution to ETSDA for his 
attempt to measure the impact of spatial dependence mapping unconditioned 
income levels of countries into normalized income levels, where normalization 
is respect to the incomes of neighbouring countries. Gerolimetto and Magrini 
(2014) represents one of more recent and most significant contribution in this 
line of research. 

On the other hand, literature on ESTDA extends the spatial methods 
generally used for detecting spatial dependence in cross-sectional analysis, as 
the Moran’s I and LISA statistics, to incorporate temporal dimension. Recently 
within this line of research Rey et al. (2011) have proposed the Directional
Moran Scatter Plot to study the spatial dynamics of US states. The latter 
consists in analysing in the Moran space (the space defined by countries’ 
income and its spatially lagged value) the directions of the movement vectors 
standardized by their beginning points, i.e. the transitions that each state has 
experimented between the first and the last year centered in the orgin of axes.4 

In this paper we propose a local version of the Directional Moran Scatter 
Plot, labelled Local Directional Moran Scatter Plot (LDMS), which consists in 
the estimate of a random vector field in the Moran space exploiting the 
information from the observed movement vectors. With respect to Directional 
Moran Scatter Plot our methodology allows to conduct inference on the local 
spatial dynamics, and to provide a forecast of the future income distribution 
which takes into account also spatial dependence. 

The next section gives an heuristic introduction to the Local Directional 
Moran Scatter Plot; Section 3 discusses the nonparametric methodology used in 
its estimate, and how to make some inference at local level; Section 4 illustrates 
the use of LDMS to forecast the distribution dynamics of income in presence of 
spatial dependence. Section 5 concludes. 

2.  THE LOCAL DIRECTIONAL MORAN SCATTER PLOT 

To gain the intuition of our proposed methodology consider Fig. 1, which 
reports the Moran Scatterplot (i.e. the levels of relative per capita GDP  

                                                      
4 The movement vectors can also be standardized by their ending point. In any case, the 
standardized movement vectors are placed at a common origin, but they preserve their 
length and direction. 
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versus its spatially lagged values ) for a sample of 49 US states in 1987 (red 
points) and 2013 (black points).5 

Figure  1. Moran Scatterplot of relative GDP per capita of a sample  
of 49 US states for 1987 (red points) and 2013 (black points) 

Spatial matrix  is defined by rook contiguity.
 
For both years Moran’s  is positive (equal to 0.10 in 1987 and 0.13 in 

2013) and statistically significant at 10%, suggesting that some spatial 
dependence should be at work; however, from Moran Scatter Plot no 
information can be extracted on the impact of this spatial dependence on the 
distribution of GDP per capita in terms of its strength and direction.6 

A possibility to fill this gap is to assume that, in the same spirit of the 
distribution dynamics approach (see Quah 1997), the dynamics of GDP per 
capita of an economy can be expressed as a (random) function of only its 
position in the Moran space, i.e. the dynamics of GDP per capita follows a 
Markovian process, where the states are defined in terms both of the (relative) 
level of GDP per capita  and its spatially lagged values  (instead of only 
y). This corresponds to the estimate of a random vector field in Moran space, 
which we label Local Directional Moran Scatter Plot (LDMS).7 

                                                      
5 The spatial matrix  is defined by rook contiguity; given this definition of spatial 
dependence, we exclude from the sample the two US states without any link (Alaska 
and Hawaii). 
6 Using a six-nearest neighbor spatial weight matrix, Gerolimetto and Magrini (2014) 
finds statistically significant spatial dependence across US States. Morevoer, their 
estimated Moran’s  is generally higher. 
7 A vector field in a plane can be visualized as a collection of arrows with a given 
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Figure  2. Movement vectors in the Moran space   
for a sample of 49 US states over the period 1987-2013 

 
The movement vectors reported in Fig. 2, representing all the observed 

transitions calculated with a time lag of 10 years and expressed in annual scale 
(1-year ahead) in the Moran space , provides the basic information set 
to estimate a LDMS.8 In particular, Fig. 2 contains 49 x (2013-1987-10+1) = 
833 movement vectors. For comparison, Rey et al. (2011) in the upper panel of 
their Fig. 2 reports only 49 movement vectors, representing the transitions from 
the first to the last year (1969 and 2008 respectively) of each state in the 
sample. Nonetheless the different time period considered, the overall picture of 
spatial dynamics looks very similar in the most of Moran space (the south-west 
quadrant contains the most of observations with a spatial dynamics converging 
toward bisector), but with some important differences (the spatial dynamics in 
the north-east and south-east quadrants). 

Figure 2 suggests an overall pattern of convergence to bisector and, in 
particular, towards the region around point (1,1), although such convergence is 
absent or very weak for other regions of the Moran space, as for example that 
around (1.3,1.1). In general, the presence of a strong random component in US 
states’ movements makes difficult to identify any spatial pattern by only a 
graphical inspection, especially when the number of movement vectors is very 
large as in our case. 

In the next section we discuss how to properly estimate a LDMS by the set 
of observed movement vectors. 
                                                                                                                                  
magnitude and direction (our movement vectors) each attached to a point in the plane 
(Polyanin and Manzhirov 2006). A random vector field consider for each point in the 
plane not just a movement vector, but a set of movement vectors with an associate 
probability distribution (Polyanin and Manzhirov 2006). 
8 All the calculations are made using R (R Core Team, 2014). Codes and data are 
available on author’s web page http://dse.ec.unipi.it/ fiaschi/. 
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3.  ESTIMATION OF A LOCAL DIRECTIONAL  
MORAN SCATTERPLOT  

Consider a sample of  economies observed for  periods; economy  is 
characterized by its level of relative (to the sample average) income in each 
point in time , and by the average income of its neighbours , where  
is the the -the row of the spatial weight matrix expressing which economies 
are neighbours of  (  and ), and  is the vector of 
relative income of all economies. 

We assume that the spatial dynamics of economy  at period , i.e. the 
dynamics of economy  in the space , only depends on , i.e. 

 follows a time invariant and Markovian stochastic process. 

The spatial dynamics of the sample in the Moran space can be therefore 
represented by a random vector field (RVF). In particular, given a subset  of 
the possible realization of  (i.e. a lattice in Moran space, see small 
black points in Figure 2), a RVF is represented by a random variable , 
where , indicating the spatial 
dynamics (i.e. the dynamics from period  to period  represented by a 
movement vector) at . 

For each point in the lattice , with , we therefore estimate the 
distribution of probability  on the  observed movement 
vectors . In particular,  measures the probability that the 

dynamics at  follows ; this suggests that  should de-

crease as function of the distance between  and . 

Following this intuition Fig. 3 depicts a point of the lattice  and four 
observed movement vectors, which origin at different distance from . 
Function  measures for each observed movement vector its proba-
bility to affect the movement at ; these probabilities decline with distance 
from  (i.e. ), and very far observed 
movement vectors should have zero probability ( ). Blue vector 
is the expected movement from , , calculated on the base of the distri-
bution of probabilities on the observed movement vectors. 
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Figure  3. Local mean estimation of the expected movement from ( ) 

from four observed movement vectors ( ) 

Probabilities attached to each observed movement vectors, given by , are a 

negative function of the distance between  and . 
 
A convenient way to calculate these probabilities is to use a kernel function 

to measure the distance between  and . In particular:  

  (1) 

is assumed to be an estimate of the probability that at  spatial dynamics 
follows observed movement vectors , where  is the kernel func-
tion,  is the smoothing parameter and  is the sample covariance matrix of 

. The kernel function  is generally a smooth positive function which 
peaks at 0 and decreases monotonically as the distance between the observation 

 and the point of interest  increases (see Silverman, 1986 for technical 
details). The smoothing parameter  controls the width of the kernel function.9 
In the estimation we use a multivariate Epanechnikov kernel (see Silverman, 
1986 pp. 76-78), i.e.:  
                                                      
9 In all the estimation we use the optimal normal bandwidth; for a discuss on the choice 
of bandwidth see Silverman (1986). 
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  (2) 

where . Multivariate Epanechnikov kernel is particularly 
adapted to our scope because it assigns zero probability to observed movement 
vectors very far from .10 The exact quantification of “very far” is provided by 
bandwidth , i.e. higher bandwidth means higher number of observed move-
ment vectors entering in the calculation of the movement at . 

Given Eq. (1) for each point in the lattice  we estimate the -period 
ahead expected movement  using a local mean estimator, 
firstly proposed by Nadaraya (1964) and Waston (1964), where the observa-
tions are weighted by the probabilities derived from the kernel function, i.e.:11  

  (3) 

The estimation of Eq. (3) strongly depends on the choice of . This choice 
is the result of a trade-off: from one hand, a too short  can increase the noise 
in the estimation due to the possible presence of business-cycle fluctuations; on 
the other hand, a too long  could contrast with the local characteristics of the 
estimate, increasing the probability that observed movement vectors very far 
from  affects the estimate of .12 

Figure 4 reports the annualized 10-year ahead expected movements based on 
Eq. (3) for a lattice  points in the range  in 
Moran space. For a wide area of Moran space we cannot calculate any expected 
movement due to lack of observed movement vectors sufficiently close to the 
points in the lattice (as discussed above such threshold in the distance is 
proportional to the bandwidth ). 

The overall spatial dynamics pattern suggested by the estimated expected 
movements in Figure 4, is convergence toward a region around the bisector 
close but below point (1,1) for the most of trajectories starting from points in 

                                                      
10 Other possible kernels, as the Gaussian, does not allow such possibility. 
11 See Bowman and Azzalini (1997) for details. 
12 For samples with a very short time span a further limit to the choice of a long  is 
the relatively strong loss of observations. 
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the lattice below the horizontal line ; while for points above  a 
convergence toward regions around points (1.3,1.1) and (1,1.3) is expected.  

Figure  4. The Local Directional Moran Scatter Plot including all the 
annualized 10-years ahead expected movements for the points  
in the lattice where observed movement vectors are available 

Figure  5. The Local Directional Moran Scatter Plot including all the 
annualized 10-years ahead expected movements for the points in the lattice 

where the estimated movements are statistically significant at 5% level 
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These findings are confirmed also after controlling for the statistical 
significance of the estimated expected movements, whose results are reported in 
Figure 5 (see the next section for the bootstrap procedure used for the 
inference). In particular, the overall convergent spatial dynamics is confirmed; 
in addition, within regions previously identified as loci of convergence no 
significant spatial dynamics is present, suggesting that they are indeed regions 
of steadiness. 

With respect to Rey et al. (2011) our analysis confirms the presence of 
spatial dependence, i.e. and  tends to have the same sign of variation over 
time (the movement vectors show an orientation from south-west to north-east 
or vice versa); however, the proposed Standardized Directional Moran Scatter 
Plot reported in the bottom panel of Fig. 2 in Rey et al. (2011) cannot identify 
the remarkable heterogeneity of spatial dynamics among different regions of 
Moran space emerging from Fig. 5, and its implications in term of the existence 
of regions of steadiness. 

3.1. Inference on Local Directional Moran Scatter Plot 

Below we discuss in details how we have conducted the inference on the 
estimated expected movements by a bootstrap procedure, whose results is 
reported in Fig. 5. 

Given the observed sample of observations , with  and 
, the bootstrap procedure consists of four steps. 

1. Estimate the expected value of the -period ahead movement  by 

Eq. (3) for each point of the lattice ( ).  
2. Draw  samples  and the associated 

, with , by sampling with replacement 

from the observed  and the associated movement vectors .  
3. For every bootstrapped sample  and for each point of the lattice  

estimate by Eq. (3) the expected value of the -period ahead movement 
.  

4. Calculate the two-side p-value of the estimated movement vector at point  
in the lattice under the null hypothesis of no dynamics (note that null 
hypothesis of no dynamics is separately tested in the two directions  and 

) as:  
 

  (4) 

In the analysis we have set , and used the usual significance level 
of 5% to decide which expected movements to report in Fig. 5. 
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3.2. Test on the Presence of Local Spatial Dependence 

The local characteristics of LDMS allows also to test on the presence of 
local spatial dependence in the same spirit of LISA (see Anselin1995). In 
particular, the null hypothesis of no spatial dependence in the estimated 
movements in Moran space can be formulated as follows:  

  (5) 

that is the null hypothesis is that the dynamics in point  only depends on the 
value of . 

Figure  6. Permutation test for the presence of                                                    
local spatial dependence in RVF 

In the following we describe a permutation test to test the null hypothesis in 
Eq. (5).   
1. Generate  independent permutation samples , with 

, by taking the entire time-series of an economy but randomly 
permuting its neighbours (therefore in every permutation sample  is 
equal to , but  will be randomly different from ).  

2. For every permutation sample  and for each point of the lattice  by Eq. 
(3) estimate the expected value of the -period ahead movement .  

3. For each point of the lattice  calculate the difference .  

,|=|:0 iiiiiz yzEzzEH

iz
iy

P ppp Wyyz ,=
Pp 1,...,=

py
OBSy pWy OBSWy

p i
p

iz

i p

izizi
ˆˆˆ



                                                           Région et Développement     107 

4. Calculate the two-side p-value of the estimated movement vector at point  
in the lattice under the null hypothesis of no spatial dependence as  
 
 

  (6) 
 

Figure 6, which reports the results of the permutation test for  
permutations, highlights how within the three regions previously indicated as of 
steadiness, spatial dependence is absent, while is particularly effective at the 
borders of the north-east quadrant. Spatial dependence appears to be a 
significant force also around (1,1). 

The overall picture suggests that spatial dependence is a pervasive 
phenomenon, but its effects appears not so important at aggregate level because 
it is not significant in the regions of steadiness, where the most of US states are 
concentrated.13 

4.  FORECASTING BY A LOCAL DIRECTIONAL  
MORAN SCATTER PLOT  

The estimated LDMS also allows to compute -year ahead 
projections starting from the observed cross-economy income distribution. The 
proposed procedure is similar in the distribution approach to the use of the 
estimated stochastic kernel to project in the future the actual distribution; in the 
limit such projection leads to the ergodic (equilibrium) distribution. In 
particular, the randomness of the estimated LDMS suggests to replicate  time 
the procedure of computation of the -period ahead projection and to calculate 
the average distribution (the replications allows also to calculate confidence 
bands for our -year ahead projected distribution). 

The procedure for the computation of the -year ahead distribution 
starting from the distribution in the last year   is as follows. 

1. For each replication , with : 
(a) For each economy  set  ( ).  
(b) For each economy  individuate the closest point in the lattice, and assign 

to the economy  the estimated probability distribution on the observed 
movement vectors for that point,  
  
i.e.                     , where. i j

* = argmin
{i}i=1
L zj

f zi   

  

                                                      
13 From the point of view of distribution dynamics the regions of steadiness can be seen 
as also the loci in the plane where the US states should pass more time. 
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(c) For each economy  draw one transition, denoted by , from the 

observed    
with probability 

   
                  and calculate .  

(d) For each economy  normalize  in order to maintain 

that the new calculated distribution  has mean one.  

(e) For each economy  calculate the spatial lagged value  and set 

.  
(f) Repeat steps (a)-(e) for .  
(g) Estimate the cross-economy income distribution for the last forecast period 

.  

2. Take the average of the estimated income distributions on all replications 

  as the expected -year ahead forecast 
distribution.  

Setting  and , the distribution in Moran space of all 
computed 50-year ahead forecasts for a total of 49.000 points (49 US states 
times 1000 replications) reported in Fig. 7 highlights how no particular 
dispersion/polarization emerges from the computation of forecast distributions; 
the most of economies is expected to populate the regions of steadiness, and a 
region in the north-east quadrant just above horizontal line . 

Fig. 8 shows how the computed 50-year ahead forecast distribution of  
(green line) is not statistically different from the estimated income distribution 
in 2013 (black line). The actual income distribution across US states therefore 
should tend to persist at least for the next 50 years. 

We also report the 50-year forecast distribution of  based on the use of a 
stochastic kernel (SK) (orange line), which appears centered around 1 and more 
or less symmetric. 14  The difference between the 50-year ahead forecast 
distribution calculated by LDMS and SK measures the magnitude of the bias in 
the estimate of distribution dynamics deriving from the omission of spatial 
dependence. 

                                                      
14 We use a Gaussian kernel with adaptive bandwidth. See Quah (1997) for more details 
on the meaning of stochastic kernel and its use to forecast future distributions, and 
(Silverman, 1986, p. 100) for the procedure to estimate a stochastic kernel with adaptive 
bandwidth. 
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Figure  7. All computed 50-year ahead forecasts for a total of  
49.000 points (49 US states times 1000 replications) (green points),  

the observed US states in 2013 (black points), and the estimated LDMS 

Figure  8. Expected 50-year ahead forecast cross-economy income 
distribution (ID), its 95% confidence bands (dotted lines), the observed 
distribution in 2013 (OD) and the 50-year ahead forecast distribution 

calculated by the estimated stochastic kernel (SK) 
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With a very different approach Gerolimetto and Magrini (2014) find a 
similar results. By using quarterly data for 48 conterminous US states over three 
decades running between 1981:Q1 and 2010:Q4, they show that neglecting 
spatial dependence substantially affect the estimate of distributional tendencies; 
in particular, in the second decade (1991:Q1 and 2000:Q4) the spatial estimator 
shows a stronger tendency towards divergence in the ergodic distribution with 
respect to the non spatial estimator.15 

5.  CONCLUDING REMARKS  

This paper has proposed a novel methodology to analyse the distribution 
dynamics in presence of spatial dependence by estimating a random vector field 
in Moran space. The methodology has successfully identified local 
heterogeneity in spatial dynamics for US States from 1987 to 2013. Inference 
on such local heterogeneity has shown how spatial dependence is present only 
in some regions of Moran space, and that there exists a converging dynamics to 
three regions where local spatial dependence is instead very weak. The forecast 
of future income distribution suggests that the most of US States should persist 
within the three regions, and that no particular change is expected in the income 
distribution with respect to 2013. The comparison with the forecasted 
distribution calculated by stochastic kernel generally used in the distribution 
dynamics literature has shown how the former can be bias from the omission of 
spatial dependence. 

The methodology could be refined by adopting an adaptive kernel in the 
estimation of LDMS, i.e. a kernel whose bandwidth changes accordingly to the 
density of observation around the point in the lattice (in particular, the 
bandwidth is larger where observations are less numerous, see Silverman, 
1986). More important, the analysis can be extended to include other 
explanatory variables of the movement vectors (e.g. the typically Solovian 
variables such as investment rates and population growth); the limit is the so-
called “curse of dimensionality” that generally plagues the use of kernel in 
multivariate analysis (see, again, Silverman, 1986). 

 

 

 

 

 

                                                      
15 Their results are not exactly comparable with ours both for the data used in the 
analysis (we have a more limited time span), and for the estimation of the stochastic 
kernel made using a nearest-neighbor bandwidth in the first year, normal scale 
bandwidth in the last year, a Gaussian kernel and mean bias adjustment via a local 
linear estimate. 
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UN DIAGRAMME DE MORAN DIRECTIONNEL - LDMS 

Résumé - Cet article s’appuie sur une démarche méthodologique originale 
permettant d’estimer l’évolution de la distribution des revenus, en présence 
d’effets de dépendance spatiale. Dans ce travail, nous admettons l’hypothèse 
que les dynamiques spatiales peuvent être représentées comme un vecteur 
aléatoire dans le diagramme de Moran. Les effets de causalité des dynamiques 
spatiales sont analysés par le biais d’un test de dépendance spatiale. La métho-
dologie utilisée permet de prévoir la future distribution des revenus, en tenant 
compte des effets de dépendance spatiale, aux Etats-Unis. 

Mots-clés - ANALYSE DE DONNÉES EXPLORATOIRE, POLARISATION, 
VECTEUR ALÉATOIRE, DÉPENDANCE SPATIALE, DISTRIBUTION DES 
REVENUS


