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Abstract - We analyze the overall size distribution across all French settlements 
in the year 2008. The sizes of the largest French cities follow the famous Zipf's 
law fairly closely, with Paris being a notable outlier. However, for the overall 
city size distribution (CSD), Zipf's law is not a useful approximation. We show 
that the lognormal (LN) distribution does a reasonable job in fitting the overall 
French CSD. Yet, it is clearly outperformed by a different parameterization – 
the double Pareto lognormal (DPLN) distribution. This is consistent with our 
previous findings for city sizes in the US and other countries. We discuss the 
implications of these results for urban growth theory.  
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1. INTRODUCTION 

The famous Zipf's law is probably the most extensively studied empirical 
regularity in urban economics. It states that the largest cities within a country 
approximately follow a Pareto distribution with shape parameter equal to minus 
one. This law is frequently expressed in an equivalent form as the rank-size rule 
for city sizes, where it states that the country's largest city is roughly twice as 
large as the second-largest, three times as large as the third-largest city, and so 
on.1 

A major drawback of this traditional literature on Zipf's law, however, is 
its focus on the upper tail of the city size distribution (CSD). In former times, 
researchers interested in the CSD of some country were forced to focus only on 
the largest cities within that country, simply because reliable data about 
population sizes were only available for them but not for smaller cities, towns, 
villages, etc. As data availability improved, it became increasingly clear that 
Zipf's law is not a useful description for the overall CSD, but that it pertains -- if 
at all -- only in the upper tail. This, however, raises several questions: Where 
does the upper tail start, i.e., what is a “large” city? As we show below, this 
issue is actually crucial because the empirical performance of Zipf's law 
depends systematically on the number of cities included in the analysis. Even 
more fundamentally, the question arises why one should truncate the sample of 
settlements in the first place if data for the overall population distribution across 
space is available. Why should we focus only on the top of the urban hierarchy 
and forget about the rest, if data does not force us to do so? 

The recent urban literature has therefore shifted its attention away from 
the upper tail and towards the overall size distribution across all “cities” of the 
country.2 In that literature, which has been initiated by Eeckhout (2004) in his 
seminal article, at least three main issues came up that are intensively debated 
ever since: First, what is the most appropriate parameterization for the overall 
CSD? Second, what is the relationship of this CSD with the traditional Zipf`s 
law, i.e., has the new evidence basically invalidated decades of research on the 
rank-size rule? Third, and maybe most importantly, where do these 
parameterizations come from and what can we learn from them about the 
engines of urban growth? 

In this paper, we focus on the case of France and reconsider some of the 
recent issues and controversies about overall CSDs. Most work in that area, 
including our own, has been done for the US urban system. Focussing on a 
leading European country is thus of interest in its own sake. Furthermore, the 
available data for settlement sizes in France (the communes) are outstandingly 
good by international standards, whereas the comparable US data are plagued 
by many more concerns regarding their comprehensiveness and accuracy. In 
section 2 we introduce these data. 
                                                      
1 Comprehensive studies found that city sizes in most countries indeed closely follow a Pareto 

distribution, but that the Zipf coefficients often deviate from unity. See Rosen and Resnick 
(1980), Soo (2005) or Nitsch (2005). 

2 From now on, we use the term “city” synonymously also for small towns and villages. 
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In section 3, we start along traditional lines and focus only on the upper 
tail. We show that the largest French cities fairly closely follow a Pareto 
distribution, even though Paris is much larger than it accordingly “should be”. 
Yet, whether we generally find evidence for or against the exact Zipf's law 
crucially depends on the definition of the upper tail, i.e., where we truncate the 
sample of cities. In section 4, we then move to the overall French CSD. 
Eeckhout (2004) has provided a theory according to which the overall CSD 
should converge to a lognormal (LN) distribution, and he showed that the LN 
indeed fits the size distribution across US “cities” (defined as Census places) 
quite well. This is bad news for the traditional Zipf literature. If the “true” 
distribution is LN, there is no Pareto distribution among large cities. Why have 
so many papers then found evidence for Zipf's law? The answer according to 
Eeckhout is that these studies may have simply misperceived the LN for the 
Pareto by looking only at a sample of large cities, because the two distributions 
have similar properties in the upper tail. In short, Zipf's law is just an illusion! 

Several authors, most notably Levy (2009), Ioannides and Skouras (2009) 
and Malevergne et al. (2011), have contested this conclusion and argued that the 
LN has serious deficits in matching the US places data. In particular, they argue 
that the LN may fit well for small and medium-sized places, but that the sizes of 
the large cities are distinctively closer to a Pareto than implied by the LN 
distribution. They hence argue that the “true” parameterization for the overall 
CSD should consist of a LN which then switches to Pareto behaviour beyond a 
certain threshold city size. They do, however, not provide a theory why such a 
functional form for the overall CSD should emerge endogenously in an urban 
system. For the French case, we find that the LN distribution does at best a 
reasonable job in matching the city size data, comparatively much worse than in 
the US. Interestingly, the deficits of the LN arise over the entire range of city 
sizes and not just in the upper tail, as can be seen in Figure 4 below. This 
suggests that an ad-hoc mixture model for the overall CSD that mechanically 
switches from LN to Pareto at some point may also have a hard time matching 
the French data. 

In section 5 we then provide a resolution to this puzzle and suggest a 
parameterization that fits the French overall CSD extremely closely: the double 
Pareto lognormal (DPLN) distribution. In previous research, see Giesen and 
Suedekum (2012) and Giesen et al. (2010), we have shown that this flexible 
distribution closely fits the overall CSD in the US and in other countries.3 The 
first bottom-line message of this paper is, therefore, that the French overall CSD 
can be approximated by the same functional form that also performs very well 
elsewhere. This robust evidence in favour of the DPLN is good news for the 
older Zipf literature. In contrast to the LN, the DPLN is fully consistent with a 
Zipfian power law pattern that emerges as an upper tail feature of an overall 
functional form. When the underlying “true” distribution is DPLN, claiming 
                                                      
3 For the US, this is true both when using administratively defined Census places as the unit of 

analysis, but also when using the recently developed area clusters by Rozenfeld et al. (2011) 
which are constructed from the “bottom-up” by using high resolution data on population densi-
ty in the US. 
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that the sizes of large cities follow a power law is no systematic mistake. Zipf's 
law is, hence, not an illusion! 

Even more importantly, in Giesen and Suedekum (2012) we develop a 
micro-founded economic model of an urban system where city sizes 
endogenously converge to a DPLN distribution. In other words, the DPLN is 
not an ad-hoc functional form that is chosen purely on the basis of data fit. It 
has an explicit theoretical foundation and can be rationalized by an economic 
model that combines scale-independent urban growth with age heterogeneity 
across cities. The second bottom-line message is, hence, that the French case 
analyzed in this paper yields further corroborating evidence for our urban 
growth model which apparently matches cross-sectional CSDs in many 
countries very successfully. 

2. DATA 

The main data set that we use in this paper comes from the French 
National Institute of Statistics and Economic Studies (INSEE). It contains the 
population sizes of 36,682 French municipalities (communes) in the year 2008 
(including the overseas departments), in total accounting for 63,961,859 
people.4 The communes are administrative units, so their boundaries are legally 
and not economically defined. In that sense, they correspond to the US Census 
places that have been used in most of the recent urban literature, including 
Eeckhout (2004). However, the French administrative settlement size data is 
more comprehensive and subject to much less concern than its US counterpart. 

The key issue here is that the Census places only represent about 74% of 
the total US population in the year 2000. The remaining 26% live in settlements 
that are neither counted as “incorporated” nor as “Census designated” places. 
Whether a settlement is an official Census place or not, is not primarily selected 
based on its population size. There are Census places with only one or two 
inhabitants. However, especially settlements in the rural parts of relatively large 
metropolitan areas are often not considered as “places” and are thus ignored in 
the data set. What is more, the definition of Census places also varies quite 
substantially across the US Federal States. These problems raise the concern 
that the Census places may be a selective or biased representation of the overall 
US CSD, since it is unknown how the remaining 26% of the US population not 
captured by the data spreads across space. The French administrative data set 
does not face such issues. It basically represents the entire French population in 
2008 and thus gives an comprehensive portray of the overall (untruncated) 
French CSD, ranging from the administrative entity of Paris with 2,211,297 
inhabitants down to the commune of Rochefourchat with exactly one inhabitant. 
Table 1 shows the ten largest communes and their respective population sizes in 
2008. 

                                                      
4 Many more details about this data as well as a historical excursion when and why it was first 

collected can be found under : 
    http://www.insee.fr/fr/methodes/nomenclatures/cog/documentation.asp  

http://www.insee.fr/fr/methodes/
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Table 1. The ten largest Municipalities / Agglomerations in France, 2008 
Municipalities Agglomerations 

Name Size Name Size 
Paris 2,211,297 Paris 10,413,386 
Marseille 851,420 Marseille 1,557,950 
Lyon 474,946 Lyon 1,536,974 
Toulouse 439,553 Lille 1,015,744 
Nice 344,875 Nice 941,490 
Nantes 283,288 Toulouse 871,961 
Strasbourg 272,116 Bordeaux 836,162 
Montpellier 252,998 Nantes 586,078 
Bordeaux 235,891 Toulon 559,246 

Still, there is the concern that the single units are defined according to 
administrative boundaries which can be quite arbitrary. Because of this, 
communes are often treated as separate units/cities even though they are 
essentially part of the same city. A principal alternative is to abandon 
administrative data and to use urban agglomerations data instead. We also 
consider such data in this paper, more specifically the population sizes of the 
major 247 French urban areas in 2008, as also provided by the INSEE. Here, the 
Paris agglomeration is on top of the urban hierarchy with a population of more 
than 10 million people (also see table 1 for the ten largest French agglo-
merations). However, this data in total only represents around 37 million 
people, i.e., less than 60% of the total French population. It is also selective in 
the sense that it is truncated from below (the smallest urban area is Bar-le-Duc 
with 19,321 inhabitants), and that it does not include the rural population 
outside the big cities. For our analysis of the overall French CSD these data are 
thus less useful, although we may still use it in section 3 where we focus only 
on the upper tail. 

A novel and very interesting approach of defining cities has recently been 
developed by Rozenfeld et al. (2008, 2011). Here, cities are defined from the 
“bottom-up” by using an algorithm on high resolution data on population 
densities in a country. The advantage of this approach of defining “cities” (also 
called “area clusters”) is that it comprehensively portrays the overall 
distribution of the entire population across space. It completely ignores artificial 
administrative boundaries, but it is not limited to metro areas beyond a certain 
threshold size. Unfortunately, such area clusters data -- which would be ideally 
suited for our type of analysis – does not yet exist for France to the best of our 
knowledge. So far, Rozenfeld et al. (2008) have only provided it for the US and 
Great Britain, and we have analyzed that data in our previous research, see 
Giesen and Suedekum (2012). 

3. LARGE CITIES IN FRANCE : ZIPF'S LAW ? 

Zipf's law is, strictly speaking, about two different statements. The first 
statement claims that city sizes follow a Pareto distribution. The second 
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statement is that the slope coefficient of the Pareto is equal to minus one. Under 
a Pareto, cities are thus distributed according to  

                             
( > ) = , 

 
 

AP s S
S

ζ

                                              (1) 

where ζ  denotes the shape parameter of the Pareto distribution, also known as 
the Zipf coefficient. The rank of a city in the urban hierarchy is given by R = N 
. P(s>S), so the parameters of eq. (1) can be estimated by  

                                        log (R) = K - ζ log(S)                                           (2) 

where = ( ) ( )+K log A log Nζ . If Zipf's law holds exactly, we have = 1ζ . 

We arrange the data so that cities are ordered by their size and labeled 
with their respective rank; Paris has rank 1, Marseille has rank 2, Lyon has rank 
3, and so on. We then run the standard rank-size regression as stated in eq. (2) 
by simple OLS. 5 

3.1.  The communes 

We start off with the municipalities data and focus on the 100 largest 
French communes. This truncated sample of cities, where the threshold rank R  
is basically chosen arbitrarily, represents 13,895,689 people, i.e., around 22% of 
the total French population. The rank-size relationship is graphically illustrated 
in figure 1, where we depict the log population size of the cities on the 
horizontal and their log rank in the urban hierarchy on the vertical axis. When 
estimating the rank-size regression (2) for these 100 cities, we obtain a slope 
coefficient of ζ = 1.476 with a standard error of σ = 0.022 and a R² of 0.98. 

This regression and the corresponding scatter plot in figure 1 convey 
three main messages: First, the graphical rank-size relationship looks almost 
linear, which is equivalent to saying that the city sizes of the largest French 
communes tend to follow a Pareto distribution fairly closely. This statement is 
supported by the overwhelmingly high R² level of the linear regression.6 
Second, there is one clear outlier: Paris. The capital city of France is much 
larger than it “should be” according to a power law for city sizes, also when 

                                                      
5 There are also more sophisticated ways of estimating the Zipf coefficient, see e.g. Gabaix and 

Ibragimov (2011) or, for an overview, Gabaix and Ioannides (2004). However, since this is not 
the focus of our paper we only use the simplest and most standard rank-size regression tech-
nique. 

6 It is well known that rank-size regressions automatically yield high R² levels, simply because of 
the ordering of cities by rank. Monte Carlo simulations show that, even if city sizes hypotheti-
cally followed a uniform distribution, such regressions would still deliver an R² around 0.8 (al-
so see Gan et al., 2006). However, R² levels exceeding 0.98 cannot be regarded as artificial ev-
idence for a Pareto distribution, but those levels can only be obtained if there is actually a pow-
er law relationship in the sizes of the cities. 
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focussing on administrative city definitions. This is a quite typical pattern 
discussed in detail by Ades and Glaeser (1995) who show that particular 
political forces often cause the capital city to be unusually large in the urban 
hierarchy. If we leave Paris out of the picture, the rank-size relationship would 
appear even more linear, and in fact, when estimating eq. (2) only for the cities 
ranked 2-100, we obtain an even higher R² = 0.991and a slope coefficient of      
ζ = 1.576 (std.err. 0.015). 

The third message is that the exact Zipf's law apparently fails to hold in 
the French case. The estimated slope coefficient deviates substantially from 
one, particularly when leaving Paris out of the regression (ζ = 1.576), but also 
when leaving it in and using all cities ranked 1 to 100 in the French urban 
hierarchy (ζ = 1.476). This evidence against the exact Zipf's law is, however, 
very sensitive to the arbitrary truncation point R  where the the CSD is cropped. 
Suppose we set = 10R , i.e., we focus only on the ten largest communes. In that 
case, we get ζ = 1.001 (std.err. 0.071, R² = 0.96) and would have to conclude 
that Zipf's law holds exactly. If we only take the largest five cities, we have ζ = 
0.841 (std.err. 0.079, R² = 0.97), and so on. 

Figure 1. Results of a Zipf regression, using the largest 100 cities 

          

 

 

 

 

 

 

 

 

In figure 2 we show how the estimated slope coefficient ζ varies with the 
choice of the truncation point R . The figure shows that a wider definition of the 
upper tail (a higher R ) tends to increase the Zipf coefficient in absolute terms. 
More generally, the figure shows that Eeckhout's (2004) important insight about 
the US urban system also applies for France: By the choice of the truncation 
point, researchers can manipulate whether they obtain evidence in favour of or 
against the exact Zipf's law. A power law shape for city sizes seems to prevail 
almost regardless of how the truncation point is set (as long as R is not too 
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large) , but whether the slope coefficient is close to the magical ζ = 1 depends 
very much on the definition of the “upper tail” of the CSD. 

Figure 2. The Zipf coefficient and the truncation point 

 

There are no generally accepted rules how this truncation point should be 
chosen, and if there are rules, they tend to lack economic foundations (see 
Chesire, 1999).7 More fundamentally, even if one could agree on an appropriate 
definition of R , the question remains why we should truncate the sample of 
cities in the first place. Why should the cities below this threshold be 
disregarded, even though we do have detailed knowledge about their population 
sizes? Because of issues like this, researchers have gradually departed from 
analyses focussed only on the upper tail, and towards inquiries about the overall 
size distribution across all settlements of a country. 

3.2.  Urban areas 

Before moving to this analysis of the overall CSD, we briefly consider 
the other data set where French cities are defined as urban agglomeration areas. 
In figure 1, we illustrate the rank-size relationship when we analogously focus 
on the 100 largest urban areas, together representing 32,433,021 people, or 
51.9% of the total French population. Again we find that the Paris area is “too 
large” given the benchmark of a perfect power law. The second-largest 
agglomeration, Marseille, is “too small” given this benchmark. However, by 
and large, that rank-size relationship still looks almost linear, and when 
estimating the standard Zipf regression for these 100 cities we obtain a highly 

                                                      
7 This general point also implies that a cross-country comparison of ζ  is difficult, because one has 

to make sure that comparable rules for the choice of the truncation points are applied in all 
countries. 
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significant slope coefficient equal to ζ = 1.0075 (standard error 0.131) and a R² 
of  0.983. In other words, across the largest 100 French urban areas, Zipf's law 
holds exactly. Figure 2 suggests that the slope coefficient ζ is also much less 
sensitive to the truncation point for the urban agglomeration data. Even when 
including all 247 urban areas, we get ζ = 0.955 (std.err. 0.005, R² = 0.99) which 
is not much different from the coefficient estimated before.8 

The main advantage of the urban agglomeration data is that it ignores 
arbitrary administrative boundaries in the definition of cities. In that sense, it is 
preferable to the communes. The evidence in figures 1 and 2 suggests that, 
across those sensibly defined cities, Zipf's law seems to be quite stable -- maybe 
except in the very upper tail. However, recall that the urban areas together 
capture only 60 % of the French population, so it is unclear if Zipf's law 
continues to hold so well if we included also the remaining 40 %. A step ahead 
would be to develop a concept of cities that does not proceed along 
administrative boundaries, but that still captures the entire population living in 
the country. The “bottom-up” approach by Rozenfeld et al. (2008, 2011), who 
define area clusters for the US and Great Britain, seems highly promising in that 
respect. However, as said before, such data does not yet exist for France. For 
the US, Rozenfeld et al. (2011) found that Zipf's law very well describes the 
size distribution across all area clusters larger than 13,000 inhabitants. Simi-
larly, in Great Britain, Zipf performed well for clusters larger than 5,000 people. 
But outside that upper tail, the law again breaks down and cities no longer obey 
to a Pareto distribution. 

Generalizing those results to France, we can speculate that the power law 
shape probably continues to hold even a bit further down the urban hierarchy, if 
more comprehensive data about area clusters below the smallest recorded urban 
area (Bar-le-Duc with 19,321 inhabitants) were available. However, eventually 
Zipf's law would very likely break down as well, once we have moved down the 
hierarchy far enough. In other words, also with urban agglomeration data, Zipf's 
law is not a useful description for the overall CSD. We have to think about 
different parameterizations, while bearing in mind that a Zipfian power law 
seems to be really pervasive in the upper tail. 

4. THE OVERALL CITY SIZE DISTRIBUTION 

From now on, we concentrate on the overall French CSD and thus on the 
administratively defined communes as the unit of analysis. In figure 3 we depict 
a kernel density estimation of the size distribution across all 36,682 
municipalities where population sizes are in logarithmic scales, see the solid 
black curve. For the purpose of comparison, we also provide the comparable 
overall CSD for the US in that figure, more specifically the empirical log size 
distribution across 25,359 US Census places in the year 2000 (see the solid grey 
curve). It becomes very clear that a Pareto parameterization cannot possibly fit 
                                                      
8 There are some deviations when we focus only on the very largest urban areas. For example, 

with R = 10 we get ζ =0.7894 (std.err. 0.099, R² = 0.88), and so clear evidence against Zipf's 
law and even against a power law shape. 
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the overall CSDs, neither in France nor in the US. The log settlement sizes 
rather appear to be close, at least visually, to a normal distribution, though with 
different variance across countries. 

4.1.  Preliminaries: Random urban growth and the LN distribution 

Eeckhout (2004) provides a theory according to which the overall CSD of 
a country should converge to a lognormal (LN) distribution. That theory is 
based on a random urban growth process where cities grow according to the 
pure Gibrat's law. More details about Eeckhout's model follow below. Applying 
the LN parameterization to the US data, Eeckhout (2004) indeed finds that it 
does a good job in matching the size distribution across Census Places. We have 
verified this result in our previous research, see Giesen et al. (2010), and Figure 
4 illustrates this. As can be seen from the broken grey line, which represents the 
fitted LN distribution, it certainly does not deliver a perfect but still a decent fit. 

Figure 3. Kernel density estimate of the French and the US overall CSD 

 

 

 

 

 

Figure  4. Kernel density estimate of the French and the US overall CSD 

  
This evidence for the overall CSD thus lends empirical support to 

Eeckhout's (2004) urban growth model. Yet, it has quite delicate implications 
for the traditional literature on Zipf's law. As a matter of fact, the LN does not 
feature a power law in the upper tail and, hence, it is strictly speaking not 
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compatible with Pareto and Zipf. Why have so many previous studies then 
provided evidence for a Zipfian power law among large cities? The reason 
according to Eeckhout (2004, 2009) is that the LN and the Pareto distribution 
have similar properties in the upper tail and can become virtually 
indistinguishable. In other words, Zipf can be observed among large cities in 
practice, because the Pareto closely resembles the true size distribution (the LN) 
in the top range.9 The definition of a “large city” also matters in this respect. As 
we have shown above, the estimated Pareto slope coefficients depend crucially 
on the truncation point within the sample of cities. Eeckhout (2004) proves that, 
if the underlying “true” distribution is LN, the coefficient estimate ζ is 
decreasing in R - a pattern that we have actually found for France in figure 2 
and that can also be observed for the US data. Summing up, when the overall 
CSD is actually a LN, previous studies on Zipf's law may have fallen for an 
illusion. 

4.2. Does the LN fit the the French data? 

In this subsection we investigate whether the suggested LN 
parameterization fits the French city size data. Using maximum likelihood 
estimation, we find that the best fit of a LN parameterization to the empirical 
size distribution for French communes is achieved with parameters μ = 6.173 
and σ = 1.343, delivering a value of the log likelihood equal to -289,238.5. In 
figure 4 we depict the best fitting LN distribution as the broken black line. 

Judged by pure visual inspection, it can be seen that the overall fit of the 
LN to the French data is fair at best. There are notable deviations, which occur 
over the entire range of city sizes. One issue is that the empirical CSD seems to 
have a fatter upper tail than the LN. In the lower tail, it is the other way around: 
The LN has more mass in the range of very small settlement sizes than the 
empirical distribution. More generally speaking, the actual French CSD exhibits 
a slight skew to the left, a distributional feature that by construction cannot be 
replicated by the LN which is symmetrical in logarithmic scales. 

Comparing the data fit of the LN between France and the US, figure 4 
shows that the LN fits much better to the US Census places than it does to the 
French communes. This conclusion can also be supported by a more formal 
statistical approach. We ran Kolmogorov-Smirnoff tests and compared the p-
values for the null that the data follow a LN. We find that this hypothesis is 
rejected much earlier for France than for the US. For the case of France we thus 
obtain much weaker support for the theoretical framework by Eeckhout (2004) 
which predicts an asymptotic LN shape for the overall CSD. We leave the full 
discussion for later, but already preview our argument, which is that this 
difference may be caused by the stronger age heterogeneity of French cities as 
compared to American cities. 

                                                      
9 Also see Mitzenmacher (2004), who shows that the density or the countercumulative distribu-

tion function of the LN generate a “nearly straight” line in logarithmic plots when the variance 
is large. A power law (Pareto) would generate exactly a straight line in such plots. 
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5. THE DPLN DISTRIBUTION 

In this section we suggest an alternative parameterization for the French 
overall CSD, the so-called “Double Pareto Lognormal” (DPLN) distribution. 
We then briefly outline the genesis of the DPLN and describe our urban growth 
model (see Giesen and Suedekum, 2012) that endogenously leads to DPLN 
distributed city sizes. The model by Eeckhout (2004), which leads to a LN 
distribution, can be seen as a special case of our more general framework, and 
we discuss the origin of the differences below. 

5.1.  Parameterization and data fit 

The DPLN distribution was initially developed by the Canadian 
statistician and economist William J. Reed (2002). It has the following density 
for city sizes S:  
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The parameters α and β are coefficients to regulate the tails, whereas μ0 
and σ0 determine the location and the spread of the distribution. Φ represents 
the normal cdf and Φc = 1 - Φ represents  the complementary cdf. A special 
feature of this distribution is that if S is large, then f(S) : S-α-1 and if S is small, 
then f(S) : Sβ-1. The DPLN therefore incorporates a Pareto distribution in the 
upper and a reverse Pareto distribution in the lower tail. Another special feature 
is that it nests the LN as a limiting case when { , }→∞α β . For other values the 
body of the distribution is also close to a lognormal shape. However, the DPLN 
should not be though of as a rigid mixture of LN and two Paretos. It is rather a 
flexible parameterization that has several distributional features which the LN 
or the mixture model of LN and Pareto cannot capture. In particular, the DPLN 
can be skewed in log scale and its kurtosis can have positive or negative excess, 
i.e., it can be more peaked (leptokurtic) or more flat (platykurtic) than the LN. 

 It is straightforward to estimate the parameters of the DPLN as given in 
(3) by maximum likelihood.10 The best fit for the French data is achieved with 
parameters α = 1.016, β = 3.358, μ0 = 5.588, and σ0 = 0.882, yielding a log 
likelihood equal to -288,178 (also see table 2). In figure 5, the dotted black line 
represents the fitted DPLN distribution for France. Already visually it is clear 
that the DPLN fits the French city size data much better than the LN. Except for 
the small bump that occurs at log city sizes around 6, the DPLN is almost 
everywhere closely in line with the empirical CSD, while this is certainly not 
the case for the LN. The better fit is confirmed in figure 6, where we show the 
vertical deviations of both hypothesized parameterizations from the empirical 
CSD. The left panel depicts the pointwise, and the right panel the cumulated 
                                                      
10 We utilize the log-likelihood function and the corresponding starting values as proposed by 

Reed (2002). 
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deviations. As can be seen, the DPLN fits the data better than the LN almost 
throughout the entire range of the distribution, and it has much lower overall 
deviations. 

Figure 5. Kernel density estimate and fitted LN distribution. 

 
The DPLN has an advantage over the LN, because it is the more flexible 

functional form with four instead of two parameters. It therefore achieves a 
better data fit almost by definition. However, various model selection tests show 
that the DPLN also achieves a better adjusted data fit, when it is penalized for 
having more degrees of freedom. In particular, we use the log likelihoods of the 
LN and the DPLN as reported in table 2 to compute Akaike's information 
criterion (AIC) and the related Schwarz criterion (also called “Bayesian infor-
mation criterion”, BIC). Both criteria trade off the precision of a hypothesized 
distribution and the number of parameters. Table 2 reports the results. By 
construction, the distribution with the lower numerical value of the AIC (BIC) 
is favored. As can be seen, for both criteria we find that the values for the 
DPLN are lower than for the LN, thus implying that the DPLN is the better 
model from a statistical point of view. 

Given the nested structure of LN and DPLN, we can also compare model 
performance by a standard likelihood-ratio test. The test statistic 

= 2 ( ( ) ( ))⋅ −DPLN LNLR ln L ln L  follows the 2 (2)χ -distribution as the DPLN has two 
parameters more than the LN. It can be shown that the null hypothesis that the 
DPLN leads to no significant improvement compared to the LN can be rejected 
at a very high confidence level (P-value below 1%). Finally, another approach 
for model comparison are Bayes factors. This technique is a flexible Bayesian 
analogue to the likelihood-ratio test, and does not even require one model to be 
nested in the other. As shown in Kass and Raferty (1995), Bayes factors can be 
easily approximated by using the Schwarz criterion (BIC). Specifically, to 
compare the LN and the DPLN distribution we can calculate the Bayes factor as 

( )≈B exp V , where ( )1=
2

−DPLN LNV BIC BIC . The value of B can be interpreted 
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by using Jeffrey's scale, and the results indicate that there is strong evidence in 
favor of the DPLN. 

Table 2. Estimated parameters and formal selection tests 
   French municipalities (2008)  

N 36,674 
Min  1 
Max  2,211,297 

   
 DPLN LN 

α   1.016 - 
β   3.358 - 
µ   5.588 6.173 
σ   0.882 1.343 
AIC   576,348 578,473 
BIC   576,314 578,456 

( )jln L   -288,178.0 -289,238.5 
LR (p-value)  2121 (0.01) 
Bayes Factor  <0.0001 
Jeffrey's Scale  Strong for DPLN 

Figure  6. Deviations of LN and DPLN to the empirical distribution 

 
For the US Census place data, we depict the fitted DPLN as the dotted 

grey line in Figure 5. The performance difference between LN and DPLN is 
much less pronounced than in the French case. All model selection criteria 
would still favor the DPLN as the more appropriate functional form (also see 
Giesen et al., 2010), but the margin of improvement is lower. For example, 
when calculating the AIC for the US data, we obtain AIC(DPLN)=469,428 and 
AIC(LN)=469,550. That is, the AIC of the DPLN is only 0.026 % below the 
LN's AIC. For the BIC we have BIC(DPLN)=469,461 and BIC(LN)=469,566 in 
the US case, i.e., a value around 0.022 % lower. In the French case, the 
performance difference is around 16 to 18 times more pronounced, corro-
borating the visual impression that is delivered by figure 5. 
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Summing up, all model selection criteria clearly show that the DPLN is a 
very well suited functional form for the French empirical CSD, much better 
(even in adjusted terms) than the LN. In that respect, the French case is in line 
with the evidence that we have established in our previous research, where we 
show that the DPLN matches empirical CSDs both across countries and for 
different ways of defining “cities” very well. 

5.2. Genesis of the DPLN 

The DPLN is not an ad-hoc parameterization that is chosen purely to 
achieve a good data fit. In Giesen and Suedekum (2012) we show that it 
actually emerges endogenously from a dynamic economic model of an urban 
system that combines scale-independent urban growth (Gibrat's law) as in 
Eeckhout (2004) with endogenous city creation and age heterogeneity across 
cities. 

In Eeckhout's (2004) model, there is an economy with a fixed population 
and a given number of locations across which workers are freely mobile. The 
locations differ by their exogenous total factor productivities, and in every time 
period each location is hit by an idiosyncratic productivity shock that is drawn 
from a probability distribution with mean μ = 0 and variance σ² > 0. At the city 
level, there is a trade-off between positive and negative size externalities that 
accrue within but do not spill over across locations. In a spatial equilibrium 
utility is equalized across locations, since workers are perfectly mobile across 
space. If a city experiences a positive productivity shock, this attracts people 
into the respective location. The negative externalities dominate at the city 
level, however, and this prevents a degenerate CSD where the entire population 
wants to concentrate in a single location. At the aggregate level there is no 
productivity growth, i.e., the single locations' productivities (and ultimately 
population sizes) evolve randomly without an aggregate trend. 

From the perspective of a single city at some point in time t0, this growth 
process (Gibrat's law) directly implies that its expected log population size T  
years ahead will follow a normal distribution. This is essentially a manifestation 
of the central limit theorem, as cities face random productivity shocks and their 
sizes thus also evolve randomly over time.11 The overall CSD of the country in 
a given point in time aggregates the sizes of all cities that exist at that time. As 
long as all cities start from the same initial conditions and are subject to the 
same growth process for the same amount of time, which is the case in 
Eeckhout's (2004) model, this aggregation problem is easy: All cities have the 
same LN size probability distribution, which in turn is then also equivalent to 
the country's overall CSD. Things are more complicated, however, if cities are 
heterogenous. 

Suppose cities are created at different points in time, so that there is age 
heterogeneity across cities. This is a highly realistic assumption, both for France 
                                                      
11In another influential paper, Gabaix (1999) has shown that Zipf's law follows as the limiting 

distribution of an augmented version of Gibrat's law that includes a lower bound for city sizes; 
also see Gabaix and Ioannides (2004). 
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and for other countries: Some cities are older than others. Furthermore, suppose 
there is aggregate productivity growth in the country, i.e., the distribution from 
which cities receive their i.i.d. shocks has a positive mean. Then, older cities are 
-- in expectation -- larger than younger cities, simply because they had longer 
time to grow. To obtain the overall CSD in that case, one needs to aggregate the 
city-specific size probability distributions according to the city age distri-
bution.12 Reed (2002) and Reed and Jorgensen (2004) have shown that the 
DPLN distribution as given in eq. (3) is the closed-form solution for the mixture 
of many LN distributions where the mixing parameter is exponentially 
distributed. In our context, this means that if age is exponentially distributed 
across cities, while all cities simply grow according to Gibrat's law (with 
positive drift) and thus have LN size probability distributions, this will 
asymptotically lead to DPLN distributed city sizes. 

The framework by Eeckhout (2004) corresponds to the simple mixture 
case: there is a fixed number of cities without systematic differences in initial 
sizes or city ages. In that case, the country's overall CSD actually follows a LN 
distribution. One way to generate DPLN instead of LN distributed city sizes is 
to simply assume that cities differ by age, such that the age distribution is 
exponential. The aggregation of the city-specific size probability distributions 
would then do the job: Older cities have conditional CSDs with higher means, 
since they are around for a longer time, and with an exponentially distributed 
mixing parameter (city age) the country's overall CSD would become a DPLN. 

In Giesen and Suedekum (2012) we do not rely on such an exogenous age 
heterogeneity, but we consider an extension of the Eeckhout framework where 
an exponential age distribution across cities results endogenously. First of all, 
we allow for positive growth in the economy's overall population. For a given 
number of cities, this would imply decreasing welfare levels of time, ceteris 
paribus. Since negative size externalities prevail at the city level, having to fit 
more people into a given number of locations means that people would be 
worse off. We therefore consider a social planner who can create new cities, 
subject to a fixed resource cost per city (for housing, infrastructure, etc.). We 
show that the planner would create cities at a constant rate. More specifically, 
the optimal rate of city creation is equivalent to the population growth rate, 
which in turn smoothes welfare over time. With this time path for city creation, 
the city age profile endogenously converges to an exponential distribution. 
Since existing cities grow according to Gibrat's law, due to the random 
productivity shocks and perfect mobility of workers across cities, this in turn 
implies that city sizes asymptotically follow the DPLN distribution. 

Constant growth in the number of cities is a natural outcome within our 
modelling framework, given that population grows at a constant rate as well. 
Still, it may be a delicate empirical issue because we typically do not observe 
persistent exponential growth in the number of cities within a country. 
                                                      
12 Put differently, the conditional CSD, given the city's age, is a LN distribution, since size proba-

bility distributions are identical for all cities that have the same age. The unconditional CSD is 
a mixture of many LN distributions with parameters dependent on the cities ages. 
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However, recall that the crucial driver behind the exact functional form of the 
DPLN is the exponential city age distribution, which per se seems to be 
empirically much less implausible. That age distribution may also prevail if the 
number of cities does not grow at a constant rate over time, at least not 
persistently. In particular, suppose that city creation takes place only in an early 
phase of history where new settlements are developed. Say, in this early phase, 
the rate of city creation and the population growth rate are both constant. Then, 
at some point in time, say t , population growth and city creation stop as the 
economy has now matured. At time t , the city age profile is exponential and 
the oldest cities are, in expectation, the largest ones. Projected into the future, 
the city age distribution will remain a (shifted) exponential as cities get older in 
parallel. Also the differences in city sizes that exist in t  will be projected into 
the future. In expectation, the largest cities in t  will also be the largest one in 

1+t , and so on. The overall CSD is thus still a mixture of heterogeneous city-
specific size probability distributions, reflecting the size differences at t , and 
will thus continue to follow a DPLN shape, though an increasingly fuzzy one 
given the variance of the idiosyncratic shocks to city productivity and size. 

Summing up, in Giesen and Suedekum (2012) we have extended 
Eeckhout's (2004) urban growth framework and considered several realistic 
features that were missing in the baseline model: aggregate productivity growth, 
aggregate population growth, and most importantly, age heterogeneity across 
cities. The overall CSD implied by our more general model – the DPLN – is 
much closer to the data (in France and in other countries) than the theoretically 
implied CSD of the baseline version, the LN. In our model, the crucial element 
of age heterogeneity arises endogenously from constant growth in the number 
of cites. However, there are also other ways of getting at an exponential city age 
distribution. 

6. CONCLUSIONS AND DISCUSSION 

In this paper we have shown that the DPLN distribution provides an 
excellent fit to the French overall city size distribution, consistent with previous 
research for the urban systems in the US and other countries. Our research in 
this area can, in our view, potentially settle several controversies in the 
literature on urban growth and city size distributions. 

There is still a lively debate how to parameterize overall CSDs, and 
especially about the relationship of this parameterization with the older 
literature on Zipf's law. If the “true” model of the CSD is a LN distribution, this 
would be bad news for the old Zipf literature. It would mean that researchers 
have made a systematic mistake for decades, by thinking that they have detected 
a power law for large cities, whereas in fact it was something else that only 
looks similar like a Zipfian power law. When the “true” model is the DPLN, 
there is no discrepancy between the old and the new literature on CSDs. The 
DPLN distribution actually features a power law in the upper tail, so previous 
research did not succumb to an illusion. 
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Other researchers have suggested alternative ways of bridging those 
literatures. In particular, Levy (2009), Ioannides and Skouras (2009) and 
Malevergne et al. (2011) have all suggested that an appropriate parameterization 
for the overall CSD should involve some combination of LN in the body and 
Pareto in the (upper) tail of the distribution. None of these authors have 
developed a theory-based distribution, however, that can be rationalized by an 
underlying urban growth model. This is the particular benefit of the DPLN 
distribution. We can make explicit not only the stochastic foundations of the 
DPLN, but even provide a fully micro-founded economic model in which city 
sizes endogenously converge to this overall CSD. The distributional properties 
of the DPLN are similar in spirit to the ad-hoc functional forms advocated by 
the other authors, but even slightly more flexible than a rigid convex 
combination of LN and Pareto.  

Another key advantage of the DPLN is that it delivers a very good fit for 
many different data sets. In Giesen and Suedekum (2012) we show that the the 
LN parameterization may be well suited to match the US Census places data, 
but it fails miserably to match the overall CSD when using the recently 
developed “area clusters” data by Rozenfeld et al. (2008, 2011) where cities are 
economically and not administratively defined. The DPLN, however, fits the 
overall CSD for both definitions very closely. In this paper, we have focussed 
on the French case, and showed that France is no exception in this respect. 

In fact, the data fit of the DPLN is actually much better for France than 
for the US administrative city units, the Census places. Having described the 
underlying model(s) of the LN and the DPLN, we can even hypothesize why 
this is the case. According to our theoretical framework, the country's overall 
CSD should have a more distinctive DPLN pattern the stronger is the age hete-
rogeneity across cities within that country. If all cities were equally old, our 
model would predict that the CSD becomes again a LN. If some cities are much 
older than others within the country, however, there is a distinctive power law 
pattern in the upper tail and the cities located in the upper tail should on average 
also be much older than the cities in the bottom range of the size distribution. 

Systematic empirical research on the age profile of cities within and 
across countries is still a largely neglected topic in urban economics, probably 
because reliable data on city creation dates are difficult to obtain. There are 
some marvellous recent attempts in this direction, e.g. the works by Bosker and 
Buringh (2011) and Bosker et al. (2012) that should be pushed further much 
more. Also there is little empirical work on the evolution of the number of cities 
in a country, particularly when small settlements ought to be included in the 
analysis. Notable exceptions include Henderson and Wang (2007) or Gonzáles-
Val (2010). However, even if a full empirical analysis is beyond the scope of 
this paper, comparing France and the US in terms of the age heterogeneity of 
their cities is a relatively easy exercise. The oldest American city is probably 
Jamestown, VA, which was founded in 1607. The French urban system is much 
older, so in short, age heterogeneity across cities is much stronger in France 
than in the US. Consistently, we find that the DPLN outperforms the LN by a 
higher margin in France. 
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LA DISTRIBUTION RANG-TAILLE DE TOUTES LES VILLES 
FRANÇAISES : UN ESSAI D’ÉVALUATION 

Résumé - Cet article propose d’étudier la distribution rang-taille de toutes les 
villes françaises en 2008, en incluant les plus petites localités. La distribution 
rang-taille des plus grandes villes françaises suit la loi de Zipf, sauf Paris qui, 
par son poids démographique, s’écarte de cette distribution canonique. Si l’on 
considère l’ensemble des villes la loi de Zipf n’est plus valide, et une distri-
bution lognormale semble plus adaptée. Néanmoins, la meilleure adéquation est 
donnée par une distribution double Pareto lognormale (DPLN), ce qui corres-
pond à des résultats obtenus sur les Etats-Unis et d’autres pays. Les impli-
cations théoriques de ce résultat sont discutées dans cet article.  

Mots-clés : DISTRIBUTION RANG-TAILLE DES VILLES, LOI DE ZIPF, 
LOI DE GIBRAT, DISTRIBUTION DOUBLE PARETO LOGNORMALE. 
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